Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 24040129-8    https://doi.org/10.11896/cldb.24040129
  高分子与聚合物基复合材料 |
共价有机框架材料的热导和热电应用研究进展
王梓霄, 熊良涛, 李浩源*
上海大学微电子学院,上海 201800
Research Progress on Thermal Conductivity and Thermoelectricity Applications of Covalent Organic Frameworks (COF) Materials
WANG Zixiao, XIONG Liangtao, LI Haoyuan*
School of Microelectronics, Shanghai University, Shanghai 201800, China
下载:  全 文 ( PDF ) ( 14572KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 共价有机框架(COF)材料是一类由质量较小的原子(C、B、N、O等)通过共价键连接形成的周期性规整多孔材料,其因具有可调节的热导率而适用于多种热相关应用。高热导率的COF材料可用于器件散热器等热管理模块,而低热导率的COF材料可以利用热电效应将温度梯度转化为电压,从而提供能源。本文讨论了孔径大小、结晶状态、温度、气体吸附等因素对COF材料热导率的影响规律,综述了目前COF材料的热导率数值范围和近年来利用COF材料导热或者绝热性质以及热电性质的应用研究工作,最后对COF在热导方面的发展方向进行了总结和展望,希望能为COF材料热导和热电相关应用的进一步发展提供参考和启发。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王梓霄
熊良涛
李浩源
关键词:  共价有机框架  多孔材料  纳米材料  热导率  热电    
Abstract: Covalent organic framework (COF) materials are a class of periodically ordered porous materials formed by light atoms (C, B, N, O, etc.) connected through covalent bonds, featuring adjustable thermal conductivity suitable for various thermal applications. COF materials with high thermal conductivity can be utilized in heat management modules like device heat sinks, while those with low thermal conductivity can leverage the thermoelectric effect to convert temperature gradients into voltage, thereby providing energy. This review discusses the influence of factors such as pore size, crystalline state, temperature, gas adsorption, etc., on the thermal conductivity of COF materials. It summarizes the range of thermal conductivity values of current COF materials and recent research on utilizing COF materials for thermal conduction or insulating properties and thermoelectricity properties. Finally, the review provides a summary and outlook on the development direction of COF in terms of thermal conduction, aiming to offer insights and inspiration for further advancements in COF-related thermal applications.
Key words:  covalent organic framework    porous material    nanomaterials    thermal conductivity    thermoelectricity
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TB34  
基金资助: 国家自然科学基金(22103053)
通讯作者:  *李浩源,上海大学微电子学院教授、博士研究生导师。2006年吉林大学化学专业本科毕业,2015年清华大学化学系化学专业博士毕业。目前主要材料多尺度模拟等方面的研究工作。在J.Am.Chem.Soc.、Energy Environ.Sci.、Adv.Funct.Mater.、Chem.Mater.等期刊发表论文40余篇。lihaoyuan@shu.edu.cn   
作者简介:  王梓霄,2016年6月于哈尔滨工业大学获得工学学士学位。现为上海大学微电子学院硕士研究生,在李浩源教授的指导下进行研究。目前主要研究领域为共价有机框架材料。
引用本文:    
王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
WANG Zixiao, XIONG Liangtao, LI Haoyuan. Research Progress on Thermal Conductivity and Thermoelectricity Applications of Covalent Organic Frameworks (COF) Materials. Materials Reports, 2024, 38(12): 24040129-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24040129  或          http://www.mater-rep.com/CN/Y2024/V38/I12/24040129
1 Geng K, He T, Liu R, et al. Chemical Reviews, 2020, 120 (16), 8814.
2 Wu M X, Yang Y W. Chinese Chemical Letters, 2017, 28 (6), 1135.
3 Knebel A, Caro J. Nature Nanotechnology, 2022, 17 (9), 911.
4 Wang L, Wu J. Chemical Engineering Progress, DOI:10.16085/j.issn.1000-6613.2023-0952 (in Chinese).
王丽娜, 武金升. 化工进展, DOI:10.16085/j.issn.1000-6613.2023-0952.
5 Yusran Y, Li H, Guan X, et al. EnergyChem, 2020, 2(3), 100035.
6 Liu J, Wang N, Ma L. Chemistry-an Asian Journal, 2020, 15 (3), 338.
7 Zhao D, Wang B, Chong Y, et al. Materials Engineering, 2023, 51 (5), 58(in Chinese).
赵冬冬, 王冰, 崇玉亮, 等. 材料工程, 2023, 51 (5), 58.
8 Li J, Jing X, Li Q, et al. Chemical Society Reviews, 2020, 49 (11), 3565.
9 Mandal A K, Mahmood J, Baek J. ChemNanoMat, 2017, 3 (6), 373.
10 Zhang H, Geng Y, Huang J, et al. Energy & Environmental Science, 2023, 16 (3), 889.
11 Keller N, Bein T. Chemical Society Reviews, 2021, 50 (3), 1813.
12 Ren X, Liao G, Li Z, et al. Coordination Chemistry Reviews, 2021, 435, 213781.
13 Kwon J, Ma H, Giri A, et al. ACS Nano, 2023, 17(16), 15222.
14 Giri A, Hopkins P E. Nano Letter, 2021, 21 (14), 6188.
15 Huang B L, Ni Z, Millward A, et al. International Journal of Heat and Mass Transfer, 2007, 50 (3-4), 405.
16 Ying P, Zhang J, Zhang X, et al. Journal of Physical Chemistry C, 2020, 124 (11), 6274.
17 Ma H, Aamer Z, Tian Z. Materials Today Physics, 2021, 21, 100536.
18 Feng D, Feng Y, Liu Y, et al. Journal of Physical Chemistry C, 2020, 124 (15), 8386.
19 Evans A M, Giri A, Sangwan V K, et al. Nature Materials, 2021, 20 (8), 1142.
20 Merillas B, Vareda J P, Martín-de León J, et al. Polymers, 2022, 14 (13), 2556.
21 Haase F, Lotsch B V. Chemical Society Reviews, 2020, 49 (23), 8469.
22 Chen C, Huang C, Chuang S. Advanced Functional Materials, 2015, 25 (2), 207.
23 Evans A M, Ryder M R, Ji W, et al. Faraday Discuss, 2021, 225, 226.
24 Sajid H. Physical Chemistry Chemical Physics, 2024, 26 (11), 8577.
25 Tritt T M. Thermal conductivity:theory, properties, and applications, Springer Science & Business Media, Germany, 2005, pp. 12.
26 Howell J R, Mengüç M P, Daun K, et al. Thermal radiation heat transfer, CRC Press, USA, 2021, pp. 45.
27 Volz S G, Chen G. Physical Review B, 2000, 61 (4), 2651.
28 Gustafsson S E. Review of Scientific Instruments, 1991, 62 (3), 797.
29 Abad B, Borca-Tasciuc D A, Martin-Gonzalez M S. Renewable and Sustainable Energy Reviews, 2017, 76, 1348.
30 Stalhane B, Pyk S. Tek Tidskr, 1931, 61 (28), 389.
31 Tan F, Han S, Peng D, et al. Journal of the American Chemical Society, 2021, 143 (10), 3927.
32 Ma Q, Zeng L, Liu X, et al. Microporous and Mesoporous Materials, 2022, 331, 111623.
33 Ji H, Li M, Yan G, et al. ACS Applied Materials & Interfaces, 2023, 15 (30), 36738.
34 Freitas S K S, Borges R S, Merlini C, et al. Journal of Physical Chemistry C, 2017, 121 (48), 27247.
35 Liu Y, Feng Y, Huang Z, et al. Journal of Physical Chemistry C, 2016, 120 (30), 17060.
36 Thakur S, Giri A. Journal of Materials Chemistry A, 2023, 11 (35), 18660.
37 Grimvall G. Thermophysical properties of materials, Elsevier, Netherlands, 1999, pp. 11.
38 Klemens P G. Proceedings of the Physical Society, 1955, 68 (12), 1113.
39 Lee H, Vashaee D, Wang D Z, et al. Journal of Applied Physics, 2010, 107 (9), 094308.
40 Zhao M, Pan W, Wan C, et al. Journal of the European Ceramic Society, 2017, 37 (1), 1.
41 Hu F, Hu Z, Liu Y, et al. Journal of the American Chemical Society, 2023, 145, 50, 27718.
42 Jin F, Nguyen H L, Zhong Z, et al. Journal of the American Chemical Society, 2022, 144 (4), 1539.
43 Yu B, Li W, Wang X, et al. Journal of the American Chemical Society, 2023, 145 (46), 25332.
44 Liu Y, Ma Y, Yang J, et al. Journal of the American Chemical Society, 2018, 140 (47), 16015.
45 Hopkins P E, Kaehr B, Piekos E S, et al. Journal of Applied Physics, 2012, 111 (11), 113532.
46 Erickson K J, Léonard F, Stavila V, et al. Advanced Materials, 2015, 27 (22), 3453.
47 Xie X, Li D, Tsai T H, et al. Macromolecules, 2016, 49 (3), 972.
48 Jia S, Liu Y, Hao L, et al. Journal of the American Chemical Society, 2023, 145 (48), 26266.
49 Tao X, Wang Z, Zhang Q P, et al. Journal of the American Chemical Society, 2023, 145 (46), 25471.
50 Zhou T, Wu X, Deng T, et al. Journal of Materials Chemistry A, 2023, 11, 15821.
51 Wang L, Dong B, Ge R, et al. ACS Applied Materials & Interfaces, 2017, 9 (8), 7108.
52 Chumakov Y, Aksakal F, Dimoglo A, et al. Journal of Electronic Mate-rials, 2016, 45 (7), 3445.
53 Chumakov Y, Bayram G. Journal of Electronic Materials, 2020, 49 (9), 5498.
54 Li C, Ma Y, Tian Z. ACS Macro Letters, 2018, 7 (1), 53.
55 Li C, Ma H, Li T, et al. Nano Letters, 2021, 21 (9), 3708.
56 Duncan R A, Romano G, Sledzinska M, et al. Journal of Applied Phy-sics, 2020, 128 (23), 235106.
57 Vega-Flick A, Pech-May N W, Cervantes-Alvarez F, et al. Journal of Applied Physics, 2018, 124 (8), 085101.
58 Ma T, Kapustin E A, Yin S X, et al. Science, 2018, 361 (6397), 48.
59 Peng L, Guo Q, Song C, et al. Nature Communications, 2021, 12 (1), 5077.
[1] 成翊榕, 李万万. 基于光热纳米材料的热信号侧向层析技术研究进展[J]. 材料导报, 2024, 38(8): 22110152-6.
[2] 张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
[3] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[4] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[5] 张聪, 梁柄权, 王晓峰, 陈新亮, 侯国付, 赵颖, 张晓丹. 透明导电材料研究进展[J]. 材料导报, 2024, 38(6): 23040045-13.
[6] 长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
[7] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[8] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[9] 王昊煜, 刘哲, 贺思佳, 张健, 杭格格, 卫嬴, 汪秀琛. 可穿戴纤维基能源转换器件研究进展[J]. 材料导报, 2024, 38(3): 22060149-10.
[10] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[11] 朱子健, 胡鹏博, 冯驰. 多孔材料毛细滞后现象研究综述[J]. 材料导报, 2024, 38(12): 23030281-10.
[12] 戴瑛凡, 杨瑞昊, 吕权杰, 李晗寅, 陶可. 无机纳米材料用于声动力治疗的研究进展[J]. 材料导报, 2024, 38(1): 22110085-6.
[13] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[14] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[15] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed