Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21040113-5    https://doi.org/10.11896/cldb.21040113
  无机非金属及其复合材料 |
纳米氧化硅制备的成核过程:Ⅱ.成核阶段的可视化研究
任高远1,2, 苏宏久1, 王树东1
1 中国科学院大连化学物理研究所,辽宁 大连116023
2 中国科学院大学能源学院,北京100049
Nucleation Process of the Silica Nanoparticles: Ⅱ. Visualization of the Nucleation Stage
REN Gaoyuan1,2, SU Hongjiu1, WANG Shudong1
1 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
2 Energy College, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 11948KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在自然界中二氧化硅颗粒大都属于非晶态物质,非晶态物质成核过程中的形貌是不规则并且不可控的。因此研究氧化硅颗粒成核的过程对控制纳米颗粒的生长有着重大的意义。本工作以水玻璃为原料,采用离子交换法制备纳米二氧化硅颗粒。在制备过程中,对纳米氧化硅的成核过程进行了可视化研究。结合透射电子显微镜(TEM)、动态光散射(DLS)以及pH等检测手段,对纳米氧化硅颗粒晶核形成的全过程进行了细致的研究和分析。研究表明,纳米氧化硅颗粒的成核过程需要经历预备期、过渡期、成核期和生长期四个阶段;不同阶段,纳米氧化硅的形貌差异较大并且持续时间不同,整个过程可以持续6 h以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任高远
苏宏久
王树东
关键词:  二氧化硅  透射电子显微镜  成核    
Abstract: Most silica belongs to noncrystalline phase in nature and the morphology of amorphous materials is irregular and uncontrollable during nucleation. However, nucleation process of silica particles is significant for controlling the morphology of nanoparticles. In this work, silica nanoparticles were prepared by ion exchange method with the sodium silicate as the raw material. During the synthetization process, the nucleation process of silica nanoparticles was investigated by visualization characterization like transmission electron microscope (TEM), dynamic light scattering (DLS) and pH detection. It was found that there were four stages in the nucleation of silica nanoparticles, the preparatory stage, the transitional stage, the nucleation stage and the growth stage. The morphology of different stages is different and the duration is different as well. The whole process can last more than 6 h.
Key words:  silica    TEM    nucleation
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TQ11  
通讯作者:  wangsd@dicp.ac.cn   
作者简介:  任高远,中科院大连化物所副研究员。2006年9月至2012年3月,在大连理工大学获得化学工程学士学位,在帝国理工学院获得化学工程硕士学位,目前在大连化物所工作并攻读博士学位。工作学习期间发表专利5篇,参与研究性文章7篇。
王树东,中科院大连化物所研究员,博士研究生导师。1985年在太原工业大学获得工学学士学位,1993年在大连理工大学获得工学博士学位,毕业后在中科院大连化学物理研究所工作。1997年任研究员,现任现代化工研究室主任、能源环境工程组组长。2001年以JSPS访问学者就职于日本资源环境综合技术研究所,2005年以访问教授就职于法国普瓦提(Poitiers)大学。发表学术文章近40余篇。
引用本文:    
任高远, 苏宏久, 王树东. 纳米氧化硅制备的成核过程:Ⅱ.成核阶段的可视化研究[J]. 材料导报, 2022, 36(12): 21040113-5.
REN Gaoyuan, SU Hongjiu, WANG Shudong. Nucleation Process of the Silica Nanoparticles: Ⅱ. Visualization of the Nucleation Stage. Materials Reports, 2022, 36(12): 21040113-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040113  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21040113
1 Vertegel A A, Siegel R W, Dordick J S. Langmuir, 2004, 20 (16), 6800.
2 Fu J, Jiao J, Song H, et al. Chemistry of Materials, 2020, 32 (1), 341.
3 Woignier T, Phalippou J, Vacher R, et al. Journal of Non-Crystalline Solids, 1990, 121 (1), 198.
4 Wagner H, Bedorf D, Kuchemann S, et al. Nature Materials, 2011, 10 (6), 439.
5 Liu Y H, Wang D, Nakajima K, et al. Physical Review Letters, 2011, 106 (12), 1255041.
6 Wang W H. Nature Materials, 2012, 11 (4), 275.
7 Wijnen P W J G, Beelen T P M, Rummens K P J, et al. Journal of Applied Crystallography, 1991, 24 (5), 759.
8 Boukari H, Lin J S, Harris M T. Chemistry of Materials, 1997, 9 (11), 2376.
9 Nair B N, Elferink W J, Keizer K, et al. Journal of Colloid and Interface Science, 1996, 178 (2), 565.
10 Saint-Michel F, Pignon F, Magnin A. Journal of Colloid and Interface Science, 2003, 267 (2), 314.
11 Liu D, Chen J, Song L, et al. Polymer, 2017, 120, 155.
12 Mcmahon P J, Moss S D. Journal of Applied Crystallography, 1999, 32, 956.
13 Flodström K, Teixeira C V, Amenitsch H, et al. Langmuir, 2004, 20 (12), 4885.
14 Kammler H K, Beaucage G, Mueller R, et al. Langmuir, 2004, 20 (5), 1915.
15 Boukari H, Lin J S, Harris M T. Journal of Colloid and Interface Science,1997, 194 (2), 311.
16 Bailey J K, Mecartney M L. Colloids and Surfaces,1992, 63 (1-2), 151.
17 Zecevic J, Hermannsdorfer J, Schuh T, et al. Small, 2017, 13 (1), 1.
18 De Put M W P V, Carcout C C M C, Bomans P H H, et al. Small, 2015, 11 (5), 585.
19 Meijerink M J, Spiga C, Hansen T W, et al. Particle & Particle Systems Characterization,2019, 36 (1), 18003741.
[1] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[2] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[3] 陈煜太, 黄威, 姜红, 李珊, 王元凤. 磺酸基与羧基修饰纳米二氧化硅:两种阴离子型纳米指纹显现材料的制备与应用[J]. 材料导报, 2022, 36(5): 21020127-7.
[4] 任高远, 苏宏久, 王树东. 纳米氧化硅制备的成核过程:Ⅰ.工艺条件的影响[J]. 材料导报, 2022, 36(11): 21040123-4.
[5] 李洁, 张佳, 付明琴, 许立强, 胡其志, 李小鹏, 余萃. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(z2): 483-487.
[6] 吕博, 陈连喜. 磷酸基功能化二氧化硅材料的制备、性能和应用[J]. 材料导报, 2021, 35(Z1): 143-150.
[7] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[8] 苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
[9] 冯江波, 王景平, 苑慧莹, 任秦博, 曹金安, 王学川. 不同粒径PANI/SiO2对环氧涂层防腐性能的影响[J]. 材料导报, 2021, 35(24): 24182-24188.
[10] 应宗耀, 郑煜铭, 邵再东, 程璇. 胺基改性二氧化硅气凝胶的制备及对刚果红的吸附性能[J]. 材料导报, 2021, 35(20): 20005-20010.
[11] 康兴隆, 鲁哲宏, 柳妍, 冯伟丽, 刘保英, 房晓敏, 丁涛. 改性纳米二氧化硅协效二乙基次磷酸铝阻燃尼龙6[J]. 材料导报, 2021, 35(18): 18047-18051.
[12] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[13] 王博闻, 方针, 付志瑶, 胡建平, 彭永晶. 不同SiO2含量对氧化锌电阻片通流性能的影响[J]. 材料导报, 2020, 34(Z2): 52-56.
[14] 张硕. 利用纳米碳酸钙为模板制备二氧化硅空心微球[J]. 材料导报, 2020, 34(Z2): 91-94.
[15] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed