Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20120095-6    https://doi.org/10.11896/cldb.20120095
  无机非金属及其复合材料 |
自修复型微胶囊在沥青路面中的受力分析及破裂机制
朱月风1,2,3, 赵向臻1,2,3, 司春棣1,2,3,*, 闫涛4,5, 李彦伟6
1 石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043
2 河北省交通安全与控制重点实验室,石家庄 050043
3 石家庄铁道大学交通运输学院,石家庄 050043
4 河北省交通规划设计院,石家庄 050043
5 交通运输行业公路建设与养护技术材料及装备研发中心,石家庄 050043
6 河北交投干线公路开发有限公司,石家庄 050043
Mechanical Analysis and Fracture Mechanism of Self-healing Microcapsules in Asphalt Pavement
ZHU Yuefeng1,2,3, ZHAO Xiangzhen1,2,3, SI Chundi1,2,3,*, YAN Tao4,5, LI Yanwei6
1 State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 Key Laboratory of Traffic Safety and Control of Hebei Province, Shijiazhuang 050043, China
3 School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
4 Hebei Provincial Communications Planning and Design Institute, Shijiazhuang 050043, China
5 Research and Development Center of Transport Industry of Technologies, Materials and Equipments of Highway Construction and Maintenance, Shijiazhuang 050043, China
6 Hebei Transportation Investment Arterial Highway Development Co., Ltd., Shijiazhuang 050043, China
下载:  全 文 ( PDF ) ( 7057KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用多尺度分析及复合材料断裂力学方法,研究了微胶囊材料在沥青路面中的力学性能需求以及微胶囊在微裂缝作用下的破裂机制。首先,应用离散元法从宏观、细观和微观三个尺度逐层确定模型和参数,构建含微胶囊的沥青路面多尺度模型,分析车辆重载作用下微胶囊的受力行为。其次,以改进扩展有限元法研究含微胶囊的沥青胶浆复合材料的裂纹扩展,考察微胶囊材料参数、相对位置等因素对裂纹扩展路径的影响,确定微胶囊能够及时破裂并发挥自修复作用的性能要求。研究表明:在1.43 MPa轮胎接地压力下,沥青混凝土中面层沥青砂浆内部的接触压力和接触拉力分别为0.347 N、0.093 N;通过微观尺度的分析可得,微胶囊所受接触压力的均值为25 mN,接触拉力的均值为7.7 mN。复合材料断裂力学分析表明,当微胶囊的弹性模量小于沥青胶浆基体的弹性模量时,微胶囊的存在对裂尖断裂参数起强化作用,微裂纹朝着微胶囊扩展,使得微胶囊及时破裂并发挥自修复功能。在微胶囊材料选择和制备时,可应用先进技术(如纳米压痕技术或原子力显微镜等)对微胶囊的力学性能参数进行测量,以使其满足沥青路面中的使用要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱月风
赵向臻
司春棣
闫涛
李彦伟
关键词:  沥青路面  微胶囊  多尺度  离散元  断裂力学    
Abstract: The multi-scale analysis method and fracture mechanics method for composite materials were conducted to study the mechanical property requirements of microcapsule in asphalt pavement and the rupture mechanism of microcapsule under microcracks. Firstly, the multi-scale model of asphalt pavement with microcapsule was established from macro to meso and then to micro-scale by discrete element method. The mechanical response of microcapsules was analyzed under heavy traffic load. Then, modified extended finite element method was used to study the crack propagation of asphalt mortar composites with microcapsule. The influence of mechanical parameters and distribution of microcapsule on the crack growth trajectories were investigated. The performance requirements of microcapsule were determined for timely breaking and releasing the self-healing agent. The results show that the contact pressure and contact tension of interior of asphalt mortar in asphalt concrete middle layer are 0.347 N and 0.093 N under 1.43 MPa tire pressure. The average contact pressure and contact tension of all microcapsules are found to be 25 mN and 7.7 mN. The fracture mechanics analysis shows that when the elastic modulus of microcapsule is smaller than that of the matrix, the microcapsule would play an important role in strengthening the crack tip fracture parameters. The micro-crack will move towards to the microcapsule, which enables the microcapsule to serve for the self-healing function. For further application of microcapsule in asphalt pavement, some advanced technologies, like nano indentation technology or atomic force microscope, can be used to measure the mechanical properties of microcapsule.
Key words:  asphalt pavement    microcapsule    multi-scale    discrete element    fracture mechanics
发布日期:  2022-05-24
ZTFLH:  U416  
  TB34  
基金资助: 河北省自然科学基金项目(E2020210089);国家自然科学基金项目(11972237;12072204);河北省高等学校科学技术研究项目(QN2019234);河北省引进留学回国人员重点项目(C20190513;C20200361)
通讯作者:  sichundi@stdu.edu.cn   
作者简介:  朱月风,博士,毕业于长安大学道路与铁道工程专业,石家庄铁道大学讲师,硕士研究生导师,主要从事沥青路面结构与新型路面材料方面的研究,在国内外发表文章20多篇,SCI/EI检索8篇,国家专利6项。
司春棣,石家庄铁道大学教授、博士研究生导师,交通运输学院科研副院长。2007年博士毕业于天津大学,美国密歇根理工大学交通材料研究中心访问学者,河北省青年拔尖人才,河北省新世纪“三三三人才工程”人选。主持国家自然科学基金2项、河北省自然科学基金2项、河北省教育厅优秀青年基金1项、河北省留学回国人员重点资助项目1项,发表学术论文30余篇,被SCI、EI检索20余篇,参编地方标准1部。其团队主要研究方向包括路面计算力学及仿真、沥青路面材料与设计方法、车-路-桥耦合动力学的研究、材料分子动力学模拟等。
引用本文:    
朱月风, 赵向臻, 司春棣, 闫涛, 李彦伟. 自修复型微胶囊在沥青路面中的受力分析及破裂机制[J]. 材料导报, 2022, 36(10): 20120095-6.
ZHU Yuefeng, ZHAO Xiangzhen, SI Chundi, YAN Tao, LI Yanwei. Mechanical Analysis and Fracture Mechanism of Self-healing Microcapsules in Asphalt Pavement. Materials Reports, 2022, 36(10): 20120095-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120095  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20120095
1 He Liang, Cai Zhuo, Feng Chang, et al. Journal of Chang'an University(Natural Science Edition), 2018, 38(2), 9(in Chinese).
何亮, 蔡卓, 冯畅, 等.长安大学学报(自然科学版), 2018, 38(2), 9.
2 Rao Zhipeng, He Liang, Li Guannan, et al. Highway, 2019, 64(6), 203(in Chinese).
饶志鹏, 何亮, 李冠男, 等.公路, 2019, 64(6), 203.
3 Jeppson M R.U.S.patent, US4319856A, 1982.
4 Jeppson M R.U.S.patent, US4594022A, 1986.
5 Garcia Á, Schlangen E, Van Deven M, et al. Journal of Hazardous Materials, 2010, 184(1), 603.
6 Zhou Tianshuo, Pei Jianzhong, Li Rui, et al. Synthetic Materials Aging and Application, 2015, 44(2), 45(in Chinese).
周天澍, 裴建中, 李蕊, 等. 合成材料老化与应用, 2015, 44(2), 45.
7 Su J, Schlangen E. Chemical Engineering Journal, 2012, s198-199, 289.
8 Su J, Schlangen E, Qiu J. Powder Technology, 2013, 235(2), 563.
9 Sun D, Hu J, Zhu X. Colloid and Polymer Science, 2015, 293(12), 3505.
10 Sun D, Lu T, Zhu X, et al. Construction and Building Materials, 2018 , 175, 88.
11 Zhang Z, Saunders R, Thomas C R. Journal of Microencapsulation, 1999, 16, 117.
12 Zhang Z, Stenson J D, Thomas C R. Advances in Chemical Engineering, 2009, 37, 29.
13 Zhao Zhao, Ji Hongwei, Chen Jinlong, et al. Journal of Experimental Mechanics, 2013, 28(5), 580(in Chinese).
赵钊, 计宏伟, 陈金龙, 等.实验力学, 2013, 28(5), 580.
14 Zhang Wei, Xin Yi, Zhang Yu, et al. Journal of Chemical Industry and Engineering, 2008, 59(6), 1595(in Chinese).
张伟, 辛毅, 张纾, 等.化工学报, 2008, 59(6), 1595.
15 Dubreuil F, Elsner N, Fery A. The European Physical Journal E, 2003, 12(2), 215.
16 Liu Weidong, Gao Ying, Huang Xiaoming, et al. Journal of Harbin Institute of Technology, 2019, 51(3), 99(in Chinese).
刘卫东, 高英, 黄晓明, 等.哈尔滨工业大学学报, 2019, 51(3), 99.
17 Tang Y, Wu G X, Yu M, et al. Journal of Highway and Transportation Research and Development, 2018, 35(12), 14(in Chinese).
唐羽, 吴国雄, 余苗,等. 公路交通科技, 2018, 35(12), 14.
18 Zhang F Q, Teng X Q, Li B B. Journal of Railway Science and Enginee-ring, 2019, 16(5), 1216(in Chinese).
张富强,滕旭秋,李斌斌. 铁道科学与工程学报, 2019, 16(5), 1216.
19 Zhu Y F. Study on mechanical behavior and performance requirements of self-healing microcapsules in Asphalt Pavement. Ph.D. Thesis, Chang’an University, China, 2017(in Chinese).
朱月风. 自愈型微胶囊在沥青路面中的力学行为及性能需求研究. 博士学位论文, 长安大学, 2017.
20 中交公路规划设计院. 公路沥青路面设计规范 (JTG D50-2006), 人民交通出版社, 2007.
21 Li H J, Huang X M. Journal of Highway and Transportation Research and Development, 2004, 21(7), 5(in Chinese).
李海军, 黄晓明. 公路交通科技, 2004, 21(7), 5.
22 You Z, Adhikafi S, Dai Q. Journal of Engineering Mechanics, 2008, 134(12), 1053.
23 Chen J, Huang X M. Journal of Harbin Institute of Technology, 2009, 41(9), 100(in Chinese).
陈俊, 黄晓明.哈尔滨工业大学学报, 2009, 41(9), 100.
24 Sheng Y, Zhu X L, Zeng X G, et al. Materials Reports A:Review Papers, 2019, 33(7), 2419(in Chinese).
盛鹰, 朱星亮, 曾祥国, 等. 材料导报:综述篇, 2019, 33(7), 2419.
25 Bu Y Z, Jin T, Li J. Engineering Mechanics, 2019, 36(6), 211(in Chinese).
卜一之, 金通, 李俊. 工程力学, 2019, 36(6), 211.
26 Yan X Y, Wang S R, Wen D S, et al. Journal of Northwestern Polytechnical University, 2019, 37(3), 628(in Chinese).
颜新宇, 王守仁, 温道胜,等. 西北工业大学学报, 2019, 37(3), 628.
27 Belytschko T, Black T. International Journal for Numerical Methods in Engineering, 1999, 45,601.
28 Belytschko T, Hao H, Xu J, et al. International Journal of Numerical Methods in Engineering, 2003, 58(12), 1873.
[1] 张东尧, 白开皓, 李传常. 复合相变织物的制备及应用[J]. 材料导报, 2022, 36(8): 20080153-6.
[2] 郭生伟, 王鑫, 薛敏, 李丹, 王固霞. 声化学法制备巯基壳聚糖/黄芪油微胶囊[J]. 材料导报, 2022, 36(6): 21010096-5.
[3] 盛鹰, 贾彬, 王汝恒, 陈国平. 基于内聚力模型的复合裂纹耦合扩展多尺度数值模拟研究与实验验证[J]. 材料导报, 2022, 36(4): 20110172-10.
[4] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[5] 翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
[6] 陈玉星, 王天浩, 黎晓杰, 付海, 何力, 龚维. LDH-热膨胀微胶囊的合成及发泡EVA复合材料的综合性能[J]. 材料导报, 2021, 35(4): 4194-4199.
[7] 凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
[8] 杨国坤, 蒋国盛, 刘天乐, 覃鑫, 余尹飞. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2): 2032-2038.
[9] 刘炎昌, 娄鸿飞, 刘东志, 李巍, 周雪琴. 界面聚合法制备十二醇相变微胶囊的工艺及性能[J]. 材料导报, 2021, 35(2): 2157-2160.
[10] 马衍轩, 李梦瑶, 朱鹏飞, 徐亚茜, 于霞, 彭帅, 张鹏, 张颖锐, 王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198.
[11] 赵毅, 秦旻, 文凯琪, 梁乃兴, 王亚茹. 沥青路面超疏水抗凝冰材料研究进展[J]. 材料导报, 2021, 35(1): 1141-1153.
[12] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[13] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[14] 张圆圆, 杨建森. 脂肪酸相变材料的封装制备及热工性质[J]. 材料导报, 2020, 34(16): 16144-16148.
[15] 何亮, 黄胡端, Wim Van den bergh, Tóth Csaba, 高杰, Karol Kowalski, Jan Valentin. 沥青自修复微胶囊研究进展[J]. 材料导报, 2020, 34(15): 15092-15101.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed