Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 22-27    
  无机非金属及其复合材料 |
碳材料在色素电化学传感中的研究进展
邵丹1, 王美玲2, 陈志炎1, 高亚军1,3, 庞欢3
1 扬州大学食品科学与工程学院,扬州 225127
2 太原理工大学新型碳材料研究院,太原 030600
3 扬州大学化学化工学院,扬州 225002
Research Progress of Electrochemical Sensors Based on Carbon Nanomaterials in the Detection of Azo Dyes
SHAO Dan1, WANG Meiling2, CHEN Zhiyan1, GAO Yajun1,3, PANG Huan3
1 School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
2 New Carbon Materials Research Institute, Taiyuan University of Technology, Taiyuan 030600, China
3 School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
下载:  全 文 ( PDF ) ( 3128KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 偶氮类色素因其着色力强、价格低廉等优点而作为食品添加剂并被广泛应用于食品行业之中。《中华人民共和国食品添加剂卫生使用标准(GB 2760)》明确指出各类食品中的色素严禁超范围和超剂量使用。电化学检测方法具有灵敏度高、检测速度快、操作简便的优点,因此构建性能优异的电化学传感器在偶氮类色素快速检测应用中具有重要意义。其中,基于碳纳米材料修饰的电化学传感器在色素检测中具有重要影响。本文从功能化石墨烯、金属有机框架、多孔碳等碳基纳米材料出发,总结了近年来碳基修饰的电化学传感器在偶氮类色素检测中应用的研究进展,分析对比了各种碳材料的结构性能、制备方法及应用,并对功能碳纳米材料及电化学传感器的发展进行了展望,为高灵敏的新型偶氮类色素电化学传感器的开发提供研究基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵丹
王美玲
陈志炎
高亚军
庞欢
关键词:  偶氮类色素  电化学传感器  碳纳米材料  石墨烯  多孔碳材料    
Abstract: Azo dyes are used as food additives and are widely used in the food industry due to their strong coloring power and low price. The People's Republic of China Food Additives Hygienic Use Standard (GB 2760) clearly points out the pigments in various foods. The use of over-range and over-dose is strictly prohibited. The electrochemical detection method has the advantages of high sensitivity, fast detection speed, and easy operation. Therefore, the construction of an electrochemical sensor with excellent performance is of great significance in the rapid detection of azo pigments. Among them, based on carbon electrochemical sensors modified by nanomaterials have an important influence in the detection of pigments. Based on functionalized graphene, metal-organic frameworks, porous carbon and other carbon-based nanomaterials, this article summarizes the recent progress of carbon-based electrochemical sensors applied in azo detection, analysis and comparison of the structural properties, preparation methods and applications of various carbon materials, and prospects for the development of functional carbon nanomaterials and electrochemical sensors, provides a research basis for the development of chemical sensors, which are highly sensitive new azo pigments.
Key words:  azo dyes    electrochemical sensor    carbon nanomaterials    graphene    porous carbon
                    发布日期:  2021-12-09
ZTFLH:  O64  
基金资助: 江苏省高等学校自然科学基金项目(19KJB550002);国家自然科学基金青年项目(51602149);南京大学生命分析化学国家重点实验室开发基金项目(SKLACLS2001)
通讯作者:  gaoyajun@yzu.edu.cn   
作者简介:  邵丹,现为扬州大学食品科学与工程学院本科生,主要从事纳米材料与电化学传感研究。
高亚军博士,现为扬州大学食品科学与工程学院讲师,主要研究方向为新型碳纳米材料并用于食品电化学生物传感器研究。
引用本文:    
邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
SHAO Dan, WANG Meiling, CHEN Zhiyan, GAO Yajun, PANG Huan. Research Progress of Electrochemical Sensors Based on Carbon Nanomaterials in the Detection of Azo Dyes. Materials Reports, 2021, 35(z2): 22-27.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/22
1 王兴, 刘金萍, 张伟, 等. 食品安全导刊, 2015, 28, 72.
2 张金荣, 刘岩, 张文霞. 吉林大学社会科学学报, 2013(2), 42.
3 Li Y X, Yang Y, Yin S, et al. Journal of Aoac International, 2018, 101(5), 1314.
4 Yi J, Zeng L W, Wu Q Y, et al.Food Analytical Methods, 2018, 11(6), 1.
5 Li G F, Chen D, Chen Y J, et al.ECS Journal of Solid State Science and Technology, 2020, 9(12), 121014.
6 Yang Y N, Liu W, Cao J, et al.Food Chemistry, 2020, 328,127119.
7 Lipskikh O I, Korotkova E I, Khristunova Y P, et al. Electrochimica Acta, 2017, 260, 974.
8 Pan M F, Yin Z J, Lin K X, et al.Nanomaterials, 2019, 9(9), 1330.
9 Yu Y, Peng J R, PanM, et al. Small Methods, 2021,5(5), 2001212.
10 Hu J C, Zhang Z G. Nanomaterials, 2020, 10(10), 2020. https://doi.org/10.3390/nano10102020.
11 Zhang C C, Du X. Frontiers in Chemistry, 2020, 8(651). https://doi.org/10.3389/fchem.2020.00651.
12 Lv Q Y, Wang S, Sun H Y, et al. Nano Letters, 2015, 16(1), 40.
13 Zeng Y, Zhu Z H, Du D, et al.Journal of Electroanalytical Chemistry, 2016, 781, 147.
14 Wu YY, Deng P H, Tian Y L, et al. Journal of Food Composition and Analysis, 2019, 84, 103280.
15 Pogacean F, Rosu M C, Coros M, et al. Journal of the Electrochemical Society, 2018, 165(8), B3054.
16 Tahtaisleyen S, Gorduk O, Sahin Y. Analytical Letters, 2020, 53 (11), 1683.
17 Pogacean F, Coros M, Socaci C, et al. Electrochimica Acta, 2018, 283, 578.
18 Gao Y D, Xie Z K, Zhang Y L, et al. Journal of Aoac International, 2016, 99(5), 1287.
19 Gao Y D, Wang L, Zhang Y L, et al. Talanta, 2017, 168, 146.
20 Yu L L, Shi M X, Y Xiu, et al. Sensors & Actuators B Chemical, 2016, 225, 398.
21 Yu L L, Zheng H J, Shi M X, et al. Food Analytical Methods, 2016, 10, 200.
22 Li L Q, Zheng H J, Guo L L, et al. Journal of Electroanalytical Chemistry, 2019, 833, 393.
23 Dong L, Yang J, Chhowalla M, et al. Chemical Society Reviews, 2017, 46(23), 7306.
24 Ebrahimi-Tazangi F, Beitollahi H, Hekmatara H, et al. Journal of the Iranian Chemical Society, 2020, 18, 191.
25 Qiu X L, Lu L M, Leng J, et al. Food Chemistry, 2016, 190, 889.
26 Rovina K, Siddiquee S, Shaarani S M. Food Control, 2017, 82, 66.
27 Alqarni S A, Hussein M A, Ganash A A. ChemistrySelect, 2018, 3(46), 13167.
28 Adhikari J, Rizwan M, Keasberry N A, et al. Journal of the Chinese Chemical Society, 2020, 67(6), 937.
29 Pogacean F, Coros M, Mirel V, et al. Microchemical Journal, 2019, 147, 112.
30 Liu G Z, Xiong Z S, Yang L M, et al. Science of The Total Environment, 2021, 778, 146301.
31 Vatandost E, Ghorbani-Hasansaraei A, Chekin F, et al. Food Chemistry X, 2020, 6, 100085.
32 Tran Q T, Phung T T, Nguyen Q T, et al. Analytical and Bioanalytical Chemistry, 2019, 411(28), 7539.
33 Wang J, Yang B B, Zhang K, et al. Journal of Colloid and Interface Science, 2016, 481, 229.
34 Wu X, Zhang X J, Zhao C J, et al. Talanta: The International Journal of Pure and Applied Analytical Chemistry, 2018, 179, 836.
35 Vilian A T E, Kang S M, Oh S Y, et al. Food Chemistry, 2020, 323, 126848.
36 Karimi, Mohammad, Ali, et al. Food Analytical Methods, 2018, 11, 2907.
37 Deng K Q, Li C X, Li X F, et al. Journal of Electroanalytical Chemistry, 2016, 780, 296.
38 He Q G, Liu J, Liu X P, et al. Molecules, 2018, 23(9), 2130.
39 Ding Z Y, Deng P H, Wu Y Y, et al. Molecules, 2019, 24(6), 1178.
40 He Q G, Liu J, Liu X P, et al. Colloids & Surfaces B Biointerfaces, 2018, 172, 565.
41 He Q G, Liu J, Liu X P, et al. Sensors, 2018, 18(6), 1911.
42 Li G L, Wu J T, Jin H G, et al. Nanomaterials, 2020, 10(2), 307.
43 Jiang J J, Ding D, Wang J, et al. Analyst, 2021, 146(3), 964.
44 Salah A, Al-Ansi N, Adlat S, et al. Journal of Alloys and Compounds, 2019, 792, 50.
45 An Z Z, Li Z, Guo Y Y, et al. Chinese Chemical Letters, 2017, 28(7), 1492.
46 Ji L D, Hao J X, Wu K B, et al. The Journal of Physical Chemistry C, 2019, 123(4), 2248.
47 Liu W, Yin X B. TrAC Trends in Analytical Chemistry, 2015, 75, 86.
48 Ji L D, Jin Y S, Wu K B, et al. Analytica Chimica Acta, 2018, 1031, 60.
49 Ji L D, Cheng Q, Wu K B, et al. Sensors & Actuators B Chemical, 2016, 231, 12.
50 Cai Y J, Li X Y, Wu K B, et al. Analytica Chimica Acta, 2019, 1062, 78.
51 Cai Y J, Huang W S, Wu K B. Sensors and Actuators, 2020, 304, 127370.
52 Xiao P W, Meng Q H, Zhao L, et al. Materials & Design, 2017, 129, 164.
53 Zhang J, Ji Y H, Wang R Y, et al. International Journal of Electrochemical Science, 2021, DOI:10.20964/2021.02.28.
54 To J W F, Chen Z, Yao H B, et al. ACS Combinatorial Science, 2015, 1(2), 68.
55 Chen Y Z, Zhang R, Jiao L, et al. Coordination Chemistry Reviews, 2018, 362, 1.
56 Veerakumar P, Rajkumar C, Chen S M, et al. Electrochimica Acta, 2018, 271, 433.
57 Yu W H, Wang H L, Liu S, et al. Journal of Materials Chemistry A, 2016, 4, 5973.
58 Ye Q M, Chen X H, Yang J, et al. Food Chemistry, 2019, 287, 375.
59 Miao L, Song Z Y, Zhu D Z, et al. Materials Advances, 2020, 1(5), 945.
60 Wang M L, Shi H F, Cui M Z, et al. Journal of The Electrochemical Society, 2019, 166(2), B13.
61 Zhang H W, Noonan O, Huang X D, et al. ACS Nano, 2016, 10(4), 4579.
62 Zhang X, Zhao R F, Wu Q H, et al. ACS Nano, 2017, 11(8), 8429.
63 Wu H X, Qin Y M, Zong S, et al. Journal of Materials Science: Materials in Electronics, 2020, 31(16), 13321.
64 Zhang C M, Zhang R Z, Gao X H, et al.Acs Omega, 2018, 3(1), 96.
65 Peng C, Zhou S Y, Zhang X M, et al.Sensors and Actuators, B Chemical, 2018, 270, 530.
66 Zhang X J, Zheng J B. Sensors & Actuators B Chemical, 2019, 290, 648.
[1] 文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(z2): 28-32.
[2] 蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
[3] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[4] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[5] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[6] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[7] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[8] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[9] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[10] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[11] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[12] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[13] 于桐, 邵文尧, 洪专, 吴晨溥, 沈路钫, 谢全灵. 石墨烯量子点在分离膜材料中的应用研究进展[J]. 材料导报, 2021, 35(21): 21143-21150.
[14] 郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
[15] 王永欣, 胡艺纹, 赵海超, 李金龙, 王春婷, 毛金明, 王立平, 薛群基. 石墨烯基水润滑添加剂研究进展[J]. 材料导报, 2021, 35(19): 19055-19061.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed