Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 406-410    
  金属与金属基复合材料 |
化学还原法制备高分散纳米铂粒子
吴国玉1,2, 郑晔3, 王明涌2, 邢志军3
1 中国黄金集团有限公司,北京 100011
2 北京科技大学钢铁冶金新技术国家重点实验室,北京 100083
3 长春黄金研究院有限公司,长春 130012
Preparation of Highly Dispersed Nano-platinum by Chemical Reduction
WU Guoyu1,2, ZHENG Ye3, WANG Mingyong2, XING Zhijun3
1 China Gold Group Co., LTD., Beijing 100011, China
2 State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing, Beijing 100083, China
3 Changchun Gold Research Institute Co.,Ltd.,Changchun 130012, China
下载:  全 文 ( PDF ) ( 3977KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 燃料电池具有能量密度高、清洁、高效等优点,是一种理想的汽车动力电源,而铂碳催化剂是燃料电池中的关键材料;其核心组分铂价格昂贵,导致燃料电池成本居高不下,将铂纳米化可以有效提高铂利用率,降低铂用量和燃料电池成本。采用化学还原法,以氯铂酸为前驱体、硼氢化钠为还原剂、聚乙烯吡咯烷酮(PVP)为稳定剂,在25 ℃的乙二醇溶剂中反应60 min,制备了高分散纳米铂颗粒。同时,利用UV-vis、XRD、TEM和XPS等技术对制备的纳米铂颗粒的结构、形貌、分散性及尺寸进行了表征并初步探索反应条件对纳米铂颗粒的影响。结果表明:以乙二醇为溶剂兼作还原剂可制备出高度细化与分散、形貌单一、大小均匀、平均粒径为7.53 nm的铂颗粒;同时,纳米铂颗粒表面吉布斯自由能高,在PVP空间位阻和静电斥力效应的双重作用下可有效抑制纳米铂颗粒的团聚。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴国玉
郑晔
王明涌
邢志军
关键词:  燃料电池  铂纳米颗粒  化学还原  乙二醇  硼氢化钠    
Abstract: The fuel cells are regarded as a promising candidates for new-generation of automobile power sources, due to their high energy density, conversion efficiency and low environmental pollution. Platinum carbon catalyst is the key material of fuel cell in new energy vehicle, while it has the disadvantages of high cost. In order to reduce the amount of platinum, nano-platinum is an important method to improve the catalytic utilization rate and lower the cost of the catalyst. The highly dispersed nano-platinum was prepared by a liquid phase reduction method and use H2PtCl6·6H2O as a platinum precursor, NaBH4 as reducing agent, polyvinyl pyrrolidone (PVP) as stabilizing agent in ethylene glycol solvent at 25 ℃ for reaction 60 min. The structure, morphology and particles size distribution (PSD) of nano-platinum were analyzed by UV-vis, XRD, TEM and XPS. The mechanism of reaction conditions on nano-platinum was preliminarily explored in preliminarily. The results showed that platinum particles with high dispersed, single morphology, uniform size and the average particle size of 7.53 nm could be prepared by using ethylene glycol as solvent and reducing agent. The nano-platinum of the surface has high Gibbs free energy, through the double effect of sterically hindered and electrostatic repulsion with PVP can be effectively inhibited the nano-platinum aggregation.
Key words:  fuel cell    platinum nanoparticle    chemical reduction    ethylene glycol    NaBH4
                    发布日期:  2021-07-16
ZTFLH:  TB321  
通讯作者:  wuguoyu@csu.edu.cn   
作者简介:  吴国玉,中国黄金集团有限公司,博士后。于2019年获得中南大学博士学位。从事冶金材料的制备与性能应用、冶金过程的模拟与优化及燃料电池方面的研究,发表期刊论文和发明专利共10余篇。郑晔,长春黄金研究院有限公司,教授级工程师。东北大学矿物加工工程博士。2014年入选科技部“中青年科技创新领军人才”,2016年入选国家“万人计划”。从事选冶工艺研究及开发工作、新能源材料研究等。发表期刊论文40余篇,发明专利30余项。王明涌,北京科技大学钢铁冶金新技术国家重点实验室教授。博士研究生导师。中科院青年创新促进会会员。主要从事电化学冶金与产品高值化研究工作。主持国家自然科学基金4项,其它国家和企业课题10余项。在Energy Environ Sci、Adv Energy Mater、J Clean Prod、Metal Mater Trans B等主流期刊发表高水平论文110余篇,申请发明专利30余项,已授权14项。邢志军,长春黄金研究院有限公司贵金属材料与应用研究所所长,高级工程师。中南大学冶金物理化学硕士。从事黄金及贵金属冶金和材料研究。获得省部级一等奖1项、二等奖1项,发表期刊论文20余篇、专利10余项。
引用本文:    
吴国玉, 郑晔, 王明涌, 邢志军. 化学还原法制备高分散纳米铂粒子[J]. 材料导报, 2021, 35(Z1): 406-410.
WU Guoyu, ZHENG Ye, WANG Mingyong, XING Zhijun. Preparation of Highly Dispersed Nano-platinum by Chemical Reduction. Materials Reports, 2021, 35(Z1): 406-410.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/406
1 Latsuzbaia R, Negro E, Koper G. Fuel Cells, 2015,15(4),628.
2 Xu Y Y, Dong Y N, Shi J, et al. Catalysis Communications, 2011,13(1),54.
3 Kang Y J, Pyo J B, Ye X C, et al. ACS Nano, 2013, 7(1),645.
4 Huang X Q, Zhao Z P, Fan J M, et al. Journal of the American Chemical Society, 2011, 133(13),4718.
5 Cai K, Lv Z C, Chen K, et al. Chemical Communications, 2013,49(54),6024.
6 Wang J X, Inada H, Wu L J, et al. Journal of the American Chemical Society, 2009, 131 (47),17298.
7 蒋湘芬,王学斌,沈丽明,等.催化学报,2016,37(7),1149.
8 Wang C, Chi M F, Li D G, et al. Journal of the American Chemical So-ciety, 2011, 133(36), 14396.
9 Park A R, Lee Y W, Kwak D H, et al. Journal of Applied Electroche-mistry,2014,44,1219.
10 吕高孟,钱广,赵睿,等.分子催化,2004,18(5),343.
11 陈煜,唐亚文,孔令涌,等.物理化学学报,2006,22(1),119.
12 Adlim M,Bakar M A,Liew K Y, et al. Journal of Molecular catalysis A:Chemical, 2004,212 (1-2),141.
13 罗阳明,孙颖,王昌斌,等.功能材料,2002,33(6),645.
14 邵庆辉,古国榜,沈培康,等.化工新型材料,2002,30(2),31.
15 张云河,李新海,许名飞,等.材料导报,2003,17(7),84.
16 Bass R J, Dunn T M, Lin Y C, et al. Industrial & Engineering Chemistry Research,2008, 47(19),7184.
17 田春霞,杨军帅,李丽,等.物理化学学报,2016,32(6),1473.
18 张小华,钟金娣,于亚明,等.物理化学学报,2013,29(6),1297.
19 Yan X C,Jia Y, Zhang L Z, et al. Chinese Journal of Catalysis,2017,38(6),1011.
20 Fu X Y, Wang Y T, Wu N Z, et al. Journal Materials Chemistry, 2003,13(5),1192.
21 Yu Y T, Xu B Q. Applied Organometallic Chemistry,2006,20(10),638.
22 Krishnaswamy R, Remita H, Impéror-Clerc M, et al. ChemPhysChem,2006,7,1510.
23 Alekseenko A A, Guterman V E, Volochaev V A. Advanced Materials,2016,175,37.
24 吴岭.铂纳米粒子的制备及其在铁电极表面自组装的研究.硕士学位论文,山东大学,2007.
25 杨玉琴, 邹翠娥, 杜玉扣. 化学研究, 2004,15(4),17.
26 Gupta C, Maheshwari P H, Sasikala S, et al. Materials for Renewable and Sustainable Energy, 2014,36(3),1.
27 Huang J J, Ding C, Yang Y Q, et al. Chinese Journal of Catalysis,2019,40(12), 1895.
[1] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[2] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[3] 李磊, 刘晓莲, 王利媛, 康卫民, 庄旭品. 无机相拓扑结构对有机-无机复合质子交换膜性能的影响综述[J]. 材料导报, 2021, 35(Z1): 621-627.
[4] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[5] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[6] 宋显珠, 郑明月, 肖劲松, 张镇. 氢燃料电池关键材料发展现状及研究进展[J]. 材料导报, 2020, 34(Z2): 1-5.
[7] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[8] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[9] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[10] 张英杰,吴昊,曾晓苑,李雪,董鹏,肖杰. 直接碳固体氧化物燃料电池阳极材料的研究进展[J]. 材料导报, 2020, 34(3): 3090-3098.
[11] 邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066.
[12] 郭增革, 张斌, 姜兆辉, 贾曌, 丁作伟, 程博闻, 李鑫. 压力流场中含炭黑聚对苯二甲酸乙二醇酯熔体的流变特性[J]. 材料导报, 2020, 34(2): 2159-2162.
[13] 李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
[14] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[15] 王会权, 陈惠, 王后, 巫静, 刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed