Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 381-385    
  金属与金属基复合材料 |
回火处理对一种新型钴基合金表面结构和压缩力学性能的影响
温俊霞1,2,3, 余磊1,2, 曹睿1,2, 车洪艳4, 王铁军4, 董浩4, 闫英杰1,2
1 兰州理工大学有色金属先进加工与再利用省部共建国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
3 柳州职业技术学院,机电工程学院,柳州 545005
4 安泰科技股份有限公司,北京100081
Effect of Temper Treatment on the Surface Structure and the Compressive Mechanical Properties of a New Cobalt-based Alloy
WEN Junxia1,2,3, YU lei1,2, CAO Rui1,2, CHE Hongyan4, WANG Tiejun4, DONG Hao4, YAN Yingjie1,2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Mechanical and Electrical Engineering, Liuzhou Vocational & Technical College, Liuzhou 545005, China
4 Advanced Technology & Materials Limited Company, Beijing 100081, China
下载:  全 文 ( PDF ) ( 6170KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文对钴基合金试样进行了不同时间的回火处理,对压缩应力-应变曲线进行了分析,通过对回火前后钴基合金的微观组织和断口形貌的扫描电镜观察,解释了该钴基合金回火处理前后的压缩断裂过程变化和压缩性能差异。研究发现,回火处理前后的压缩试样断裂过程有较大差异:未经回火处理的试样,其压缩断裂过程表现为典型的脆性断裂,断裂面与压缩方向呈45°夹角;而经过回火处理的压缩试样,首先在试样表面产生平行轴线方向的裂纹,同时在试样顶端形成一个45°锥形断裂面,最后试样断裂。回火过程中生成的氧化层是回火试样压缩断裂过程变化的主要原因,但是对整个压缩曲线的变化起主导作用的仍然是材料的基体组织。回火后的钴基合金组织中fcc-Co相比例显著增加,Cr23C6碳化物颗粒尖角消失,形状变得圆滑,显著改善了该钴基合金的韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温俊霞
余磊
曹睿
车洪艳
王铁军
董浩
闫英杰
关键词:  钴基合金  表面氧化  回火处理  压缩性能    
Abstract: In this paper, the compressive properties and the fracture process of a cobalt-based alloy before and after tempering were analyzed and explained. The compression stress-strain curves before and after tempering were analyzed. The microstructures of the cobalt-based alloy were investigated by using X-ray diffractometer (XRD) and scanning electron microscope (SEM). The fracture process of the compressed samples before and after tempering treatment is very different. The fracture process of the compressed samples without tempering treatment is a typical brittle fracture, exhibiting an angle between fracture surface and compression axis direction of 45°. After tempered treatment, the crack was firstly generated at the surface of the compressed sample. The cracking direction was parallel to the compression direction. At the same time, there was a 45° conical fracture surface formed on the top of the sample, and then the sample fractured under compression. The core-shell structure formed by oxidation during tempering is responsible for the change of the compressive fracture behavior of this cobalt-based alloy. However, the microstructure of the material itself played a dominant role in the whole compression process. After tempering, the content of fcc-Co phase in the Co matrix obviously increased and the sharp angle of Cr23C6 particles disappeared and became smooth, which improved the toughness of the cobalt-base alloy.
Key words:  Co-based alloy    oxide layer    temper treatment    compressive test
                    发布日期:  2021-07-16
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金(51761027;51675255)
通讯作者:  caorui@lut.edu.cn@glut.edu.cn   
作者简介:  温俊霞,2011年7月在柳州职业技术学院参加工作至今。2016年9月至2020年12月在兰州理工大学材料科学工程学院获工学博士学位,以第一作者发表SCI论文3篇。主要从事金属疲劳与氧化性能、材料表面改性研究。曹睿,兰州理工大学,博士、教授、博士生导师。2003年6月兰州理工大学材料科学与工程学院参加工作至今。主要从事新材料、异种材料的焊接性、强韧性、腐蚀、变形、损伤及断裂行为研究等科研工作。发表SCI检索论文70余篇,发表中文核心期刊论文100余篇。
引用本文:    
温俊霞, 余磊, 曹睿, 车洪艳, 王铁军, 董浩, 闫英杰. 回火处理对一种新型钴基合金表面结构和压缩力学性能的影响[J]. 材料导报, 2021, 35(Z1): 381-385.
WEN Junxia, YU lei, CAO Rui, CHE Hongyan, WANG Tiejun, DONG Hao, YAN Yingjie. Effect of Temper Treatment on the Surface Structure and the Compressive Mechanical Properties of a New Cobalt-based Alloy. Materials Reports, 2021, 35(Z1): 381-385.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/381
1 马福康,等.等静压技术,冶金工业出版社,1992.
2 阴中炜,孙彦波,张绪虎,等.材料导报, 2019, 33(7),1099.
3 高佳伟, 李晶, 史成斌,等.金属热处理, 2018, 43(2), 63.
4 Gui W, Zhang H, Yang M, et al. Journal of Alloys and Compounds, 2017,695,1271.
5 王少飞, 李树索, 沙江波.稀有金属材料与工程, 2013, 42(5),1003.
6 孟翔,田象军,程序等.中国激光, 2018, 45(10),97.
7 张海燕,曹睿,车洪艳,等.材料导报, 2017, 31(24),156.
8 张海燕, 车洪艳, 曹睿,等. 材料热处理学报, 2017(2),61.
9 James P Moffat,Tamsin E Whitfield,Katerina A Christofidou,et al.Metals,2020,10(2),248.
10 初雅杰, 郝本行, 李晓泉,等.材料热处理学报,2019,40(4),40.
11 刘贵民,马丽丽.机械强度,2007, 29(1),139.
[1] 王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
[2] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[3] 路建宁, 王娟, 林颖菲, 郑开宏, 王海艳. 表面氧化处理对SiC/A356 Al复合材料组织及性能的影响[J]. 材料导报, 2020, 34(Z2): 381-385.
[4] 张俊喜, 易湘斌, 沈建成, 陈百明, 李保栋, 徐创文. 固溶和工作温度对TC21钛合金动态压缩性能和绝热剪切敏感性的影响[J]. 材料导报, 2020, 34(24): 24092-24096.
[5] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[6] 杨旭东, 许佳丽, 邹田春, 赵乃勤, 纵荣荣. 泡沫铝填充金属薄壁管复合结构的研究进展[J]. 材料导报, 2019, 33(21): 3637-3643.
[7] 高 伟,赵广杰. 硝酸和硝酸铈铵协同氧化改性木质活性碳纤维[J]. 《材料导报》期刊社, 2018, 32(9): 1507-1512.
[8] 张海燕,曹 睿,车洪艳,刘国辉,陈剑虹. Stellite12钴基合金热循环冲击前后拉伸断裂机理研究[J]. 《材料导报》期刊社, 2017, 31(24): 156-160.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed