Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 172-179    
  无机非金属及其复合材料 |
碳化硅陶瓷浆料基3D打印研究进展
唐杰1,2, 杨勇1,2, 黄政仁1,3
1 中国科学院大学材料科学与光电技术学院,北京100864
2 中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室,上海 200050
3 中国科学院宁波材料技术与工程研究所,宁波 315201
Research Progress of Silicon Carbide Ceramic Slurry Based 3D Printing
TANG Jie1,2, YANG Yong1,2, HUANG Zhengren1,3
1 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
2 State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
3 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
下载:  全 文 ( PDF ) ( 5077KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳化硅陶瓷由于具有优异的热学、力学、化学性质,被广泛应用于国民生产生活中。然而,传统的成型方法存在精度低、难以制备复杂形状等问题,已不能满足制造业的需要。增材制造为此提供了新的发展方向。本文综述了目前以浆料形式3D打印SiC陶瓷材料的进展,对比了DIW、SLA、DLP、TPP技术在制造碳化硅陶瓷材料方面的优缺点,为选择制备方法提供了参考;还综述了四种方法制备过程中存在的问题,并为此总结了一些解决方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐杰
杨勇
黄政仁
关键词:  碳化硅陶瓷  3D打印  浆料    
Abstract: Silicon carbide ceramics are widely used in technical production due to their excellent thermal, mechanical and chemical properties. Howe-ver, the traditional molding method has some problems such as low precision and difficulty in preparing complex shapes, which can no longer meet the needs of the manufacturing industry. Additive manufacturing provides a new development direction for this purpose. This paper summarizes the current development of SiC ceramic materials based on slurry, and compares the advantages and disadvantages of DIW, SLA, DLP and TPP technologies in the manufacture of SiC ceramic materials, and provides a reference for the selection of preparation methods. The problems in the preparation of the four methods are also reviewed, and some solutions are summarized.
Key words:  SiC ceramics    3D-printing    slurry
                    发布日期:  2021-07-16
ZTFLH:  TQ174  
基金资助: 国家自然科学基金重点项目(51471182)
通讯作者:  yangyong@mail.sic.ac.cn   
作者简介:  唐杰,中国科学院上海硅酸盐研究所研究生。2015年9月至2019年6月,在中国矿业大学获得矿物加工工程专业工学学士学位。主要研究方向为:3D打印Cf/SiC陶瓷基复合材料。杨勇,研究员,博士研究生导师。中国科学院“杰出人才计划”和上海市“浦江人才计划”,目前工作于中国科学院上海硅酸盐研究所。2003年在中国科学院上海硅酸盐研究所获得博士学位。2003年4月—2006年10月在日本名古屋工业大学历任COE、JSPS外国人特别研究员及特聘准教授。主要研究方向为:陶瓷材料表面改性和镀膜,贵金属和半导体纳米材料和结构的设计和制备,表面增强拉曼散射材料的研究。主持研制了国内第一套太空激光雷达用碳化硅光学部件和强激光用核心光学部件。迄今已在Nano Energy, Advance Science等国际著名刊物上发表SCI收录论文100篇,H-index 30。多次参加国际学术会议作邀请和口头报告,取得多项日本和中国授权专利。作为课题组负责人承担国家重点专项、国家自然科学基金、中科院百人计划和上海市浦江人才计划等项目,并负责多项国防军工科研项目。黄政仁,首席研究员,博士研究生导师,课题组长。1999年毕业于中国科学院上海硅酸盐研究所,获工学博士学位。现任中国科学院上海硅酸盐研究所首席研究员、宁波材料技术与工程研究所所长,历任中国科学院上海硅酸盐研究所结构陶瓷中心主任、科技发展部部长、所长助理、副所长。主要研究领域为先进结构陶瓷和陶瓷基复合材料,重点开展材料组成、结构、应力设计和制备科学等方面的研究。获得国家技术发明二等奖1项(2012年),军队科技进步二等奖1项(2012年),上海市技术发明一等奖1项(2011年),上海市科技进步二等奖1项(1999年),上海市标准化优秀技术成果二等奖1项(2008年),建材行业标准创新二等奖1项(2015年)。迄今已发表SCI论文160余篇,申请专利30余项,授权20余项。
引用本文:    
唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
TANG Jie, YANG Yong, HUANG Zhengren. Research Progress of Silicon Carbide Ceramic Slurry Based 3D Printing. Materials Reports, 2021, 35(Z1): 172-179.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/172
1 Katoh Y, Snead L L, Henager C H, et al.Journal of Nuclear Materials, 2014, 455(1-3), 387.
2 Bocanegra-Bernal M H, Matovic B.Materials Science and Engineering: A, 2009, 500(1-2),130.
3 Jingxian Z, Rong H, Hui G, et al.Scripta Materialia, 2005, 52(5), 381.
4 Tohru S S, Tetsuo U, Yoshio S. Journal of the European Ceramic Society, 2010, 30(14), 2813.
5 Melloch M R, Cooper J A.MRS Bulletin, 1997, 22(3), 42.
6 Andre R S, Urs T G, Elena T, et al. Journal of the American Ceramic Society, 2006, 89(6), 1771.
7 Frazier W E.Journal of Materials Engineering and Performance, 2014, 23(6), 1917.
8 Ligon S C, Liska R, Stampfl J, et al.Chemical Reviews, 2017, 117(15), 10212.
9 Chen Z W, Li Z Y, Li J J, et al.Journal of the European Ceramic Society, 2019, 39(4), 661.
10 Zocca A, Colombo P, Gomes C M, et al.Journal of the American Ceramic Society, 2015, 98(7), 1983.
11 Eckel Z C, Zhou C Y, Martin J H, et al.Science, 2016, 351(6268), 58.
12 Hozer L, Lee J R, Chiang Y M.Materials Science and Engineering, 1995, 195(1-2), 131.
13 Wang Y X, Tan S H, Jiang D L, et al.Carbon, 2003, 41(11), 2065.
14 Ahn B Y, Duoss E B, Motala M J, et al.Science, 2009, 323(5921), 1590.
15 Grier D G. Nature, 2003, 424(6950), 810.
16 Michna S, Wu W, Lewis J A.Biomaterials, 2005, 26(28), 5632.
17 Lewis J A.Advanced Functional Materials, 2006, 16(17), 2193.
18 Buscall R, Mcgowan J I, Morton-Jones A J. Journal of Rheology, 1993, 37(4), 621.
19 Channell G M, Zukoski C F.Aiche Journal, 1997, 43(7), 1700.
20 Landman K A, Sirakoff C, White L R. Physics of Fluids A-Fluid Dyna-mics, 1991, 3(6), 1495.
21 Cai K P, Benito R M, Smay J E, et al.Journal of the American Ceramic Society, 2012, 95(8), 2660.
22 Xiong H W, Chen H H, Zhao L Z, et al.Journal of the European Ceramic Society, 2019, 39(8), 2648.
23 Yang J J, Lan H B, Qi T Y, et al.Scientia Sinica Technologica, 2020, 50(5), 593.
24 Lu Z L, Xia Y L, Miao K, et al.Ceramics International, 2019, 45(14), 17262.
25 Zhang H, Yang Y, Liu B, et al.Ceramics International, 2019, 45(8), 10800.
26 Larson C M, Choi J J, Gallardo P A, et al.Advanced Engineering Mate-rials, 2016, 18(1), 39.
27 Hinczewski C, Corbel S, Chartier T.Journal of the European Ce-ramic Society, 1998, 18(6), 583.
28 Dufaud O, Corbel S.Chemical Engineering Journal, 2003, 92(1-3), 55.
29 Brady G A, Chu T M, Halloran J W.In: Solid Freeform Fabrication Proceedings. Austin, 1996, pp.403.
30 Chartier T, Badev A, Abouliatim Y, et al. Journal of the European Ceramic Society, 2012, 32(8), 1625.
31 Hinczewski C, Corbel S, Chartier T. Rapid Prototyping Journal, 1998, 4(3), 104.
32 Abouliatim Y, Chartier T, Abelard P, et al.Journal of the European Ceramic Society, 2009, 29(5), 919.
33 Griffith M L, Halloran J W.Journal of Applied Physics, 1997, 81(6), 2538.
34 Wu K C, Seefeldt K F, Solomon M J, et al. Journal of Applied Physics, 2005, 98(2), 4902.
35 Ding G J, He R J, Zhang K Q, et al. Journal of the American Ceramic Society, 2019, 102(12), 7198.
36 Schmidt J, Colombo P.Journal of the European Ceramic Society, 2018, 38(1), 57.
37 Wozniak M, Hazan Y D, Graule T, et al.Journal of the European Ceramic Society, 2011, 31(13), 2221.
38 Badev A, Abouliatim Y, Chartier T, et al.Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222(1), 117.
39 Colombo P, Mera G, Riedel R, et al. Journal of the American Ceramic Society, 2010, 93(7), 1805.
40 Zhao W Y, Shao G, Jiang M J, et al.Journal of the European Ceramic Society, 2017, 37(13), 3973.
41 Hazan Y D, Penner D.Journal of the European Ceramic Society, 2017, 37(16), 5205.
42 Zanchetta E, Cattaldo M, Franchin G, et al.Advanced Materials, 2016, 28(2), 370.
43 Xing H Y, Zou B, Wang X F, et al.Journal of Alloys and Compounds, 2020, 828, 154347.
44 Brinckmann S A, Patra N, Yao J, et al.Advanced Engineering Materials, 2018, 20(11), 593.
45 Fu Y L, Xu G, Chen Z W, et al.Ceramics International, 2018, 44(10), 11030.
46 He R J, Ding G J, Zhang K Q, et al.Ceramics International, 2019, 45(11), 14006.
47 Takada K J, Sun H B, Kawata S.Applied Physics Letters, 2005, 86(7), 1122.
48 Park S H, Lim T W, Lee S H, et al.Polymer-Korea, 2005, 29(2), 146.
49 Lee K S, Kim R H, Yang D Y, et al.Progress in Polymer Science, 2008, 33(6), 631.
50 Pham T A, Kim D P, Lim T W, et al.Advanced Functional Materials, 2006, 16(9), 1235.
51 Park S, Lee D H, Ryoo H I, et al.Chemical Communications(Cambridge), 2009, 32,4880.
52 Colombo P, Schmidt J, Franchin G, et al.American Ceramic Society Bulletin, 2017, 96(3), 16.
53 Juodkazis S, Mizeikis V, Seet K K, et al. Nanotechnology, 2005, 16(6), 846.
[1] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[2] 孙万兴, 郭少青, 董弋, 刘洋, 高丽兵, 卫贤贤, 曹艳芝, 董红玉, 李鑫. 低温固化银浆的制备及树脂粘结相对其性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 402-405.
[3] 杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
[4] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[5] 沙建芳, 夏中升, 刘建忠, 郭飞, 徐海源. 超高强水泥基灌浆材料疲劳性能研究综述[J]. 材料导报, 2021, 35(11): 11013-11026.
[6] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[7] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[8] 马亮, 杨静, 王继平, 许奎. 凝胶注模制备环形二氧化铀芯块工艺研究[J]. 材料导报, 2020, 34(Z1): 157-160.
[9] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[10] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[11] 王行, 郭子傲, 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 白培康. 适于3D打印的金属及陶瓷粉末表面包覆研究进展[J]. 材料导报, 2020, 34(21): 21166-21171.
[12] 吴永健, 唐仁衡, 欧阳柳章, 李文超, 王英, 黄玲. 分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用[J]. 材料导报, 2020, 34(12): 12030-12035.
[13] 王海霞, 段光远, 朱吉萌, 王加稳, 乔春梅. 基于自由基聚合的3D打印材料变形情况表征[J]. 材料导报, 2019, 33(Z2): 573-576.
[14] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[15] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed