Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13198-13204    https://doi.org/10.11896/cldb.20050180
  高分子与聚合物基复合材料 |
高导热环氧树脂的研究进展
吴加雪1,2, 张天栋1,2, 张昌海1,2, 冯宇1,2, 迟庆国1,2,*, 陈庆国1,2
1 哈尔滨理工大学工程电介质及其应用教育部重点实验室,哈尔滨 150080
2 哈尔滨理工大学电气与电子工程学院,哈尔滨 150080
Research Status of Epoxy Resin with High Thermal Conductivity
WU Jiaxue1,2, ZHANG Tiandong1,2, ZHANG Changhai1,2, FENG Yu1,2, CHI Qingguo1,2,*,CHEN Qingguo1,2
1 Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
2 School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
下载:  全 文 ( PDF ) ( 5205KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 封装是电气工程和电子工业的重要组成部分,封装材料是决定封装成败和产品性能的关键因素之一,聚合物封装材料因可靠性与金属和陶瓷相当,成型工艺简单,且具有明显的价格优势,从而成为目前的主流封装材料。环氧树脂(EP)因收缩率小、耐热性好、密封性好及电绝缘性优良等特点,在电子封装材料领域的使用量达90%以上。近些年,随着电力设备功率密度的不断提升,电子器件的微型化以及向高温、高压、高频领域转变的发展趋势,纯环氧树脂0.2 W·m-1·K-1的低热导率使封装后的微细化超大规模集成电路以及电机运行等产生的热量难于释放,导致器件可靠性降低、寿命变短。发展高导热的环氧树脂封装材料成为必然选择。高导热环氧树脂具体包括本征型导热环氧树脂和填充型导热环氧树脂复合材料。当前,有关本征型导热环氧树脂的研究热点是通过化学合成刚性分子链或者容易结晶的小分子单体以及在分子链上引入液晶结构来提高环氧树脂的结晶度,减少声子散射。对于填充型导热环氧树脂而言,主要通过向环氧基体中添加高导热填料以构建导热通路,进而提高复合材料的热导率。但在低填充含量下往往无法构建有效的导热通路,而提高填充量又将影响材料的加工性与力学性能。与简单的共混相比,用高导热纳米填料构建3D框架可以极大地提高聚合物的热传递性能,但一般需要使用特殊工艺去除模板。本文综述了近些年关于环氧树脂导热性能的研究现状,给出了两种类型导热环氧树脂的制备方法,重点分析了提升其热导率的机制。进一步阐述了高导热填料的尺寸、形状、分布形态对填充型导热环氧树脂热导率的影响。最后,结合环氧树脂导热性能研究中存在的一些问题,展望了其未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴加雪
张天栋
张昌海
冯宇
迟庆国
陈庆国
关键词:  环氧树脂  液晶结构  导热通路  纳米填料    
Abstract: Package is an important part of electrical engineering and electronics industry. Packaging materials are one of the key factors that decide the success or failure of packaging and product performance. Polymer packaging materials are as reliable as metals and ceramics, and have simple forming technology and obvious price advantages, so become the current mainstream packaging materials. EP accounts for more than 90% of the entire electronic packaging materials because of it's small shrinkage, good heat resistance, good sealing and excellent electrical insulation. In recent years, with the continuous improvement of power density with power equipment, the development of miniaturization with electronic devices and the development trend changes to high temperature, high-pressure and high frequency fields. The low thermal conductivity of pure epoxy resin makes difficult to release the heat produced by the miniaturized ultra-large-scale integrated circuit and the operation of the motor, which causes the reliability of the device to be reduced and the life span is shortened. To develop high thermal conductivity epoxy resin packaging materials has become an inevitable choice. High thermal conductivity epoxy resin includes intrinsic thermal conductivity epoxy resin and filled thermal conductivity epoxy composite mate-rials. At present, the research hot spots of intrinsic thermal conductive epoxy resin is chemical synthesis of rigid molecular chains or small molecular monomers that are easy to crystallize and the introduction of liquid crystal structures on the molecular chains to improve the crystallinity of epoxy resins and reduce phonon scattering. Filled thermally conductive epoxy resin builds a thermal conduction pathway to improve thermal conductivity by adding a high thermal conductivity filler to the epoxy matrix. However, it is often impossible to build an effective thermal conduction pathway at low filling, and increasing filler content will affect the material processability and mechanical properties. In comparison to simple blen-ding, constructing a 3D frame with nano-fillers can greatly improve the heat transfer performance of the polymer, but it often requires a special technology to remove the template. This article reviews the current research status of the thermal conductivity of epoxy resins in recent years. Firstly, illustrating the preparation methods of two types of thermally conductive epoxy resins, and focusing on the improvement mechanism of thermal conductivity. Then, the effect of the size, shape and distribution of the high thermal conductive filler on the thermal conductivity of the filled epoxy resin is described. Finally, it introduces several issues that people should address and predicts the prospect of the research on thermal conductive epoxy resin in future.
Key words:  epoxy resin    liquid crystal structure    thermal conduction pathway    nano-fillers
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TM215.92  
基金资助: 国家自然科学基金(51678512);烟台大学研究生创新基金(YDYB2005)
作者简介:  吴加雪,现为哈尔滨理工大学高电压与绝缘技术专业硕士研究生,在迟庆国教授的指导下进行研究。目前主要研究领域为填充型高导热环氧树脂。迟庆国,男,1981年生,博士,教授,研究方向为纳米电介质与绝缘。
引用本文:    
吴加雪, 张天栋, 张昌海, 冯宇, 迟庆国, 陈庆国. 高导热环氧树脂的研究进展[J]. 材料导报, 2021, 35(13): 13198-13204.
WU Jiaxue, ZHANG Tiandong, ZHANG Changhai, FENG Yu, CHI Qingguo,CHEN Qingguo. Research Status of Epoxy Resin with High Thermal Conductivity. Materials Reports, 2021, 35(13): 13198-13204.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050180  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13198
1 Jia Y, Jiang X, Liu Z, et al. China Plastics,2020,34(1),2(in Chinese).
贾园,蒋勰,刘振,等.中国塑料,2020,34(1),2.
2 Zhang C A, Liu X H. Tianjin Science & Technology,2019,46(7),87(in Chinese).
张春爱,刘鲜红.天津科技,2019,46(7),87.
3 Li C C, Guo S Z, Ning F W, et al. Explosion-Proof Electric Machine,2016,51(6),58(in Chinese).
李翠翠,郭胜智,宁方为,等.防爆电机,2016,51(6),58.
4 Tian F Q, Xiong W W, Xia Y, et al. Insulating Materialss,2020,53(1),1(in Chinese).
田付强,熊雯雯,夏宇,等.绝缘材料,2020,53(1),1.
5 Chen H, Ginzburg V V, Yang J, et al. Progress in Polymer Science,2016,59(59),41.
6 Kim D, Kim Y H, Shin T J, et al. Chemical Communications,2017,53(58),8227.
7 Lu Y H, Hou Y F, Wang N, et al. Chemical Propellants & Polymeric Materials,2020,18(2),55(in Chinese).
卢银花,侯亚峰,王宁,等.化学推进剂与高分子材料,2020,18(2),55.
8 Feng X, Tong Q B, Yuan L M, et al. Insulating Materialss,2017,50(12),10(in Chinese).
冯鑫,佟庆彬,袁立敏,等.绝缘材料,2017,50(12),10.
9 Zhang C, Bai R Q, Ma Y, et al. Engineering Plastics Application,2019,47(10),144(in Chinese).
张超,白瑞钦,马勇,等.工程塑料应用,2019,47(10),144.
10 Zhu S F. Preparation of thermally conductive composite material for LED heat sink. Master’s Thesis, Journal of Henan University of Technology,2016(in Chinese).
朱帅甫.面向LED散热器的导热复合材料的制备.硕士学位论文,河南工业大学,2016.
11 Yan Z W, Zhang W J. Copper Clad Laminate Information,2014(2),27(in Chinese).
闫智伟,张文君.覆铜板资讯,2014(2),27.
12 Li K S, W Q. Journal of Functional Materials,2002(2),136(in Chinese).
李侃社,王琪.功能材料,2002(2),136.
13 Xu Y, Kraemer D, Song B, et al. Nature Communications,2019,10(1),1.
14 Jiang Q M, Huang H N, Meng Q J, et al. Ceramics,2018(2),12(in Chinese).
江期鸣,黄惠宁,孟庆娟,等.陶瓷,2018(2),12.
15 Li Y, Li C G, Hou Z Z, et al. Materials Reports B:Research Papers,2020,34(5),10192(in Chinese).
李颖,李成功,后振中,等.材料导报:研究篇,2020,34(5),10192.
16 Su J. Thermosetting Resin,2016,31(1),56(in Chinese).
苏江.热固性树脂,2016,31(1),56.
17 Lee J Y, Jang J. Polymer,2006,47(9),3036.
18 Chen G, Zhang Q, Hu Z, et al. Journal of Macromolecular Science Part A,2019,56(5),484.
19 Zhang Q, Chen G, Wu K, et al. Journal of Applied Polymer Science,2020,137(38),e49143.
20 Yang X, Zhu J, Yang D, et al. Composites Part B-Engineering,2020,185,107784.
21 Islam A M, Lim H, You N, et al. ACS Macro Letters,2018,7(10),1180.
22 Tanaka S, Hojo F, Takezawa Y, et al. ACS Omega,2018,3(3),3562.
23 Hu Y P, Yuan S L, Fang B, et al. Journal of Beijing University of Chemical Technology (Natural Science Edition),2019,46(6),28(in Chinese).
胡延鹏,袁双龙,方斌,等.北京化工大学学报(自然科学版),2019,46(6),28.
24 Zhou E Z, Ying J. Journal of Zhejiang University(Engineering Science),2016,50(9),1671(in Chinese).
周二振,应济.浙江大学学报(工学版),2016,50(9),1671.
25 He Z H, Mo D C, Fu Y X, et al. International Journal of Thermal Sciences,2014,86,276.
26 Hussein S I, Abd-Elnaiem A M, Asafa T B, et al. Applied Physics A,2018,124(7),1.
27 Gao Z, Zhao L. Materials & Design,2015,66,176.
28 Wan X H, Wang L G, Zuo B, et al. Advanced Materials Research,2012,535-537,235.
29 Feng Y Z, Hu J, Xue Y, et al. Journal of Materials Chemistry A,2017,5(26),13544.
30 Zhou H X, Wang M M. Adhesion,2012,33(11),52(in Chinese).
周宏霞,王明明.粘接,2012,33(11),52.
31 Choi S, Kim J. Composites Part B: Engineering,2013,51,140.
32 Chen Y P, Hou X, Liao M Z, et al. Chemical Engineering Journal,2020,381,122690.
33 Xiao C, Tang Y, Chen L, et al. Composites Part A-Applied Science and Manufacturing,2019,121,330.
34 Chen X L, Jacob S K L, Yan W L, et al. ACS Applied Materials & Interfaces,2020,12(14),16987.
35 Hu J, Huang Y,Yao Y, et al. Acs Applied Materials & Interfaces,2017,9(15),13544.
36 Chen J, Huang X Y, Zhu Y K, et al. Advanced Functional Materials,2017,27(5),1604754.
37 Vu M C, Thieu N A T, Choi W K, et al. Composites Part A-Applied Science and Manufacturing,2020,138,106028.
38 Shenogin S, Xue L, Ozisik R, et al. Journal of Applied Physics,2004,95(12),8136.
39 Beck M P, Yuan Y, Warrier P, et al. Journal of Nanoparticle Research,2008,11(5),1129.
40 Timofeeva E V, Smith D S, Yu W, et al. Nanotechnology,2010,21(21),215703.
41 Kim H S, Jang J, Yu J, et al. Composites Part B-Engineering,2015,79,505.
42 Park J G, Cheng Q, Lu J, et al. Carbon,2012,50(6),2083.
43 Pashayi K, Fard H R, Lai F, et al. Journal of Applied Physics,2012,111(10),2474.
44 Yu A, Ramesh P, Itkis M E, et al. Journal of Physical Chemistry C,2007,111(21),7565.
45 Chauhan D, Singhvi N, Singh R, et al. International Journal of Modern Nonlinear Theory & Application,2012,1(2),40.
46 Xu J J, Yang K X, Li Z J, et al. Chinese Journal of Colloid & Polymer,2019,37(4),151(in Chinese).
许建军,杨开雄,李志坚,等.胶体与聚合物,2019,37(4),151.
47 Zhou L, Xiong C X, Dong L J. Polymer Materials Science & Engineering,2009,25(5),165(in Chinese).
周柳,熊传溪,董丽杰.高分子材料科学与工程,2009,25(5),165.
48 Jing H, Zhao C B, Chen J F, et al. Plastics Science and Technology,2010,38(10),73(in Chinese).
金鸿,赵春宝,陈建峰,等.塑料科技,2010,38(10),73.
49 Qi R, Wang J, Zhang L, et al. Materials Reports,2016,30(S1),82(in Chinese).
祁蓉,王劲,张立,等.材料导报,2016,30(S1),82.
50 Yan H, Wang R, Li Y, et al. Journal of Electronic Materials,2015,44(2),658.
51 Wu S, Ladani R B, Zhang J, et al. Carbon,2015,94,607.
52 Lian G, Tuan C, Li L, et al. Chemistry of Materials,2016,28(17),6096.
53 Li Q, Guo Y, Li W, et al. Chemistry of Materials,2014,26(15),4459.
54 Yan H, Tang Y, Long W, et al. Journal of Materials Science,2014,49(15),5256.
55 Abdalla M A, Dean D, Theodore M, et al. Polymer,2010,51(7),1614.
[1] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[2] 马甜, 贺鹏飞, 李文晓. 环氧/酸酐体系网络结构对形状记忆性能的影响[J]. 材料导报, 2021, 35(2): 2145-2150.
[3] 陈阳, 刘志勇, 管焓宇, 钱百惠. 水性聚氨酯增韧环氧树脂研究及应用进展[J]. 材料导报, 2021, 35(13): 13205-13214.
[4] 颜蜀雋, 熊海龙, 庞忠荣, 万鹏颖, 庄壮, 齐福刚. 新型无机纳米填料改性海泡石的制备及在环氧树脂涂料中的性能[J]. 材料导报, 2021, 35(12): 12057-12062.
[5] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[6] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[7] 范娟娟, 闵样, 杨吉, 张永航, 班大明. 一种具有良好抑烟性能的磷杂菲阻燃剂在环氧树脂中的应用研究[J]. 材料导报, 2021, 35(10): 10189-10196.
[8] 杨海冬, 王德志, 李洪峰, 冯浩, 肖万宝, 赵立伟, 曲春艳. 含酚酞侧基聚芳醚酮(PEK-C)对联苯型环氧树脂性能的影响[J]. 材料导报, 2020, 34(Z2): 580-585.
[9] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[10] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[11] 侯桂香, 谢建强, 姚少巍, 韩卿. 环氧化修饰碳纳米管对邻甲酚醛环氧树脂性能的影响[J]. 材料导报, 2020, 34(20): 20165-20170.
[12] 王志伟, 张春颖, 田超凯, 刘传瑞, 王赵雨, 仲流通, 刘恩赐. 填料对拉挤环氧树脂工艺及反应特性的影响[J]. 材料导报, 2019, 33(z1): 515-518.
[13] 张忠厚, 张光辉, 陈荣源, 韩琳, 谭延方, 闫春绵. 聚天冬氨酸酯型聚脲增韧结构型环氧树脂及其机理[J]. 材料导报, 2019, 33(6): 1061-1064.
[14] 张雄, 王啸夫. 若干因素对透水砖性能影响机理的研究进展[J]. 材料导报, 2019, 33(23): 3949-3954.
[15] 王楠, 胡程耀, 郭世艳, 廖俊, 霍冀川. 多巴胺修饰氮化硼对环氧树脂复合材料性能的影响[J]. 材料导报, 2019, 33(22): 3837-3841.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed