Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12123-12129    https://doi.org/10.11896/cldb.20040103
  金属与金属基复合材料 |
304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响
方振兴1, 祁文军1, 李志勤2
1 新疆大学机械工程学院,乌鲁木齐 830047
2 新疆维吾尔自治区国防科学技术工业办公室,乌鲁木齐 830000
Effect of Laser Cladding Lap Ratio of 304 Stainless Steel on Microstructure, Wear Resistance and Corrosion Resistance of CoCrW Coating
FANG Zhenxing1, QI Wenjun1, LI Zhiqin2
1 School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
2 Xinjiang Uygur Autonomous Region Office of Defense Science, Technology and Industry, Urumqi 830000, China
下载:  全 文 ( PDF ) ( 5013KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用光纤激光器在304不锈钢表面制备CoCrW合金熔覆涂层,改善其表面耐磨损及耐蚀性能。使用OM、SEM、XRD、EDS、显微硬度计、MMG-500三体磨损试验机和CS310电化学工作站分析不同搭接率对涂层组织、硬度、耐磨及耐蚀性能的影响,并寻求合适的搭接率,以期获得性能较优的激光熔覆涂层。研究结果表明:30%搭接率下的涂层无明显缺陷,从顶部到底部依次是等轴晶、柱状晶、平面晶,这些晶体主要由fcc结构的γ-Co相形成的晶核以及部分Cr7C3、(Co,Cr)23C6等相形成的晶界组成。因此适宜搭接率为30%,该参数下涂层显微硬度达到450HV,约为基体显微硬度(210HV)的2.1倍;涂层磨损量为12.71 mg,约为基体(63.06 mg)的20%;涂层平均摩擦系数约为0.4,是基体平均摩擦系数(0.65)的60%;涂层自腐蚀电位为-889 mV,基体自腐蚀电位为-998 mV;涂层自腐蚀电流密度为5.7 μA/cm2,约为基体自腐蚀电流密度(38.9 μA/cm2)的14%。合适的涂层材料及激光熔覆工艺参数可使304不锈钢涂层腐蚀倾向更小,使显微硬度、耐磨损性能及耐蚀性显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方振兴
祁文军
李志勤
关键词:  激光熔覆  304不锈钢  多道搭接  显微组织  涂层性能    
Abstract: The CoCrW alloy coating was prepared on the surface of 304 stainless steel by fiber laser to improve the wear resistance and corrosion resistance of the surface of 304 stainless steel. The effects of different lap ratio on the structure, hardness, wear resistance and corrosion resistance of the coating were analyzed by OM, SEM, XRD, EDS, microhardness tester, MMG-500 wear tester and CS310 electrochemical workstation. The better lapping rate was found and obtain the best performance coating. Results of research indicated that:there were no obvious defects in the coating with 30% lap ratio. The top and bottom of the coating were cellular crystal, columnar crystal and plane crystal, respecticely. These crystals are mainly composed of the crystal nucleus formed by the γ-Co phase of fcc structure and the grain boundary formed by some Cr7C3, (Co, Cr)23C6 phases. The optimum lap ratio is 30%. Under this parameter, the microhardness of the coating reaches 450HV, about 2.1 times of the microhardness of the substrate (210HV); the wear amount of the coating is 12.71 mg, about 20% of the substrate (63.06 mg);the average friction coefficient of the coating is about 0.4, about 60% of the substrate (0.65); the self corrosion potential of the coating is -889 mV, the self corrosion potential of the substrate is -998 mV; the self corrosion current density of the coating is 5.7 μA/cm2, about 14% of the substrate (38.9 μA/cm2). The corrosion tendency of 304 stainless steel coating is smaller and the microhardness, wear resistance and corrosion resistance are significantly improved by suitable coating materials and laser cladding process parameters.
Key words:  laser cladding    304 stainless steel    multi pass lapping    microstructure    coating performance
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TG174  
基金资助: 自治区高校科研计划自然科学重点项目(XJEDU20201007);国家大学生创新训练计划项目(201910755067)
通讯作者:  wenjuntsi@163.com   
作者简介:  方振兴,新疆大学硕士研究生。于2018年9月至今在新疆大学培养学习,主要从事激光熔覆领域的研究。
祁文军,新疆大学教授,硕士研究生导师,1993年毕业于西南交通大学,同年加入新疆大学任职至今。主持国家级项目、教育部重点项目、国家重点实验室项目等,参与“973”子项目、国家自然科学基金及省部级项目等。公开发表论文70余篇,其中EI收录10余篇,主编教育部指定教材《机电一体化系统设计及应用》等两部教材。作为主要参与人获得自治区科技进步二等奖、自治区教学成果二等奖。主要研究方向为材料加工领域中的数字化设计与应用。
引用本文:    
方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 12123-12129.
FANG Zhenxing, QI Wenjun, LI Zhiqin. Effect of Laser Cladding Lap Ratio of 304 Stainless Steel on Microstructure, Wear Resistance and Corrosion Resistance of CoCrW Coating. Materials Reports, 2021, 35(12): 12123-12129.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040103  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12123
1 Wang X,Yang Z,Wang Z. Applied Surface Science, 2019, 478, 492.
2 Talebian M, Raeissi K, Atapour M, et al. Corrosion Science, 2019, 160, 108.
3 Zhang D Q,Zhang J Q,Li J H,et al. Surface Technology, 2015, 44(12),92 (in Chinese).
张德强,张吉庆,李金华,等.表面技术, 2015, 44(12), 92.
4 Yuan Q L, Feng X D, Cao J J, et al. Materials Reports A: Review Papers, 2010, 24(2), 112(in Chinese).
袁庆龙, 冯旭东, 曹晶晶, 等.材料导报:综述篇, 2010, 24(2), 112.
5 Wen J, Che H, Cao R,et al. Materials & Design, 2020, 188, 108.
6 Zaman H A, Sharif S, Kim D W,et al. Procedia Manufacturing, 2017, 11, 2563.
7 He S S,Yu Z S,Zhang P L,et al. Chinese Journal of Lasers, 2019, 46(3), 101(in Chinese).
何珊珊,于治水,张培磊,等.中国激光, 2019, 46(3), 101
8 Yu T,Zhang Z X,Rao X X,et al. Laser & Optoelectronics Progress, 2019, 56(14), 184(in Chinese).
余廷,张子翔,饶锡新,等.激光与光电子学进展, 2019, 56(14), 184.
9 Li W, Xu P, Wang Y, et al. Journal of Alloys and Compounds, 2018, 749, 10.
10 Quazi M M, Fazal M A, Haseeb A S M A, et al. Journal of Rare Earths, 2016, 34(6),549.
11 Zhu K L, Zhang Y F, He L, et al. Surface Technology, 2016, 45(4), 53(in Chinese).
朱快乐,张有凤,何力,等.表面技术, 2016, 45(4), 53.
12 Ma Y, Zhu H M, Sun C G, et al. Surface Technology, 2017, 46(6), 238(in Chinese).
马永,朱红梅,孙楚光,等.表面技术, 2017, 46(6), 238.
13 Yang D,Ning Y H,Zhao Y G,et al. Materials Reports, 2017, 31(24), 133(in Chinese).
杨丹,宁玉恒,赵宇光,等.材料导报, 2017, 31(24), 133.
14 Fan P, Zhang G. International Journal of Refractory Metals and Hard Materials,2020,187, 05133.
15 Zhang R B,Zhang R Q. Hot Working Technology, 2018, 47(22), 166(in Chinese).
张若宾,张瑞乾.热加工工艺, 2018, 47(22), 166.
16 Lian G F,Yao M P,Cheng C R,et al. Surface Technology, 2018, 47(9), 229(in Chinese).
练国富,姚明浦,陈昌荣,等.表面技术, 2018, 47(9), 229.
17 Xie Y D,Qi W J,Gao W H. Hot Working Technology, 2018, 47(12), 112(in Chinese).
谢亚东,祁文军,高文会.热加工工艺, 2018, 47(12), 112.
18 Sun R L, Niu W, Lei Y W, et al. Transactions of Materials and Heat Treatment, 2014,35(6), 157(in Chinese).
孙荣禄,牛伟,雷贻文,等.材料热处理学报, 2014, 35(6), 157.
19 Li G. Microstructure and properties of Co-based alloy laser cladding layer reinforcement by TiC. Master's Thesis, Shandong University, China, 2016(in Chinese).
李根. TiC增强钴基合金激光熔覆层组织及性能的研究. 硕士学位论文, 山东大学,2016.
20 Luo Z, Wan H. Journal of Materials Science & Technology, 2020, 40, 47.
21 Zhao S J,Qi W J,Huang Y H,et al. Surface Technology, 2020, 49(2), 301(in Chinese).
赵盛举,祁文军,黄艳华,等.表面技术, 2020, 49(2), 301.
22 Guo W,Li K K,Chai R X,et al. Laser & Infrared, 2018, 48(9), 1087(in Chinese).
郭卫,李凯凯,柴蓉霞,等.激光与红外, 2018, 48(9), 1087.
23 Zhu G B. Research on microstructure and properties of laser cladding Ni-based alloy coating on 304 stainless steel. Master's Thesis, Jilin University, China, 2016(in Chinese).
朱国斌. 304不锈钢表面激光熔覆Ni基合金涂层组织与性能的研究. 硕士学位论文,吉林大学, 2016.
24 Lei J F,Qi W J,Xie Y D,et al. Surface Technology, 2018, 47(3), 66(in Chinese).
雷靖峰,祁文军,谢亚东,等.表面技术, 2018, 47(3), 66.
25 Liu J,Zhou Z M,Tu J,et al. Surface Technology, 2016, 45(5), 169(in Chinese).
刘杰,周志明,涂坚,等.表面技术, 2016, 45(5), 169.
26 Chang Q P, Chen Y Y, Song F,et al. Materials Reports B: Research Papers, 2015, 29(2), 107(in Chinese).
常钦鹏,陈友媛,宋芳,等.材料导报:研究篇, 2015, 29(2), 107.
27 Javidi M, Hagshenas S M S, Shariat M H. Corrosion Science, 2019, 108, 230.
[1] 张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
[2] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[3] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[4] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[5] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[6] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[7] 高敬翔, 李昌, 陈正威, 韩兴. 基于相场法的超声振动对激光熔覆多晶凝固行为的影响[J]. 材料导报, 2021, 35(12): 12161-12168.
[8] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 马国政, 白宇. 快速凝固过共晶铝硅合金的显微组织及摩擦学行为研究现状[J]. 材料导报, 2021, 35(11): 11126-11136.
[9] 王蒙, 张冠星, 钟素娟, 程战, 李文彬. Mg对Sn-0.7Cu钎料组织及性能的影响[J]. 材料导报, 2021, 35(10): 10147-10151.
[10] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[11] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[12] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[13] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[14] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[15] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed