Please wait a minute...
CLDB  2017, Vol. 31 Issue (8): 145-148    https://doi.org/10.11896/j.issn.1005-023X.2017.08.029
  计算模拟 |
反复锻压剧烈塑性变形的有限元分析*
郭炜1, 王德1, 付远1, 陆德平1, 刘克明2, 王渠东3, 张利3
1 江西省科学院应用物理研究所, 南昌 330096;
2 南昌工程学院江西省精密驱动与控制重点实验室, 南昌 330099;
3 上海交通大学材料科学与工程学院, 上海 200240
Finite Element Analysis of Repeated Forging Severe Plastic Deformation
GUO Wei1, WANG De1, FU Yuan1, LU Deping1, LIU Keming2, WANG Qudong3, ZHANG Li3
1 Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330096;
2 Jiangxi Key Laboratory for Precision Actuation and Control, Nanchang Institute of Technology, Nanchang 330099;
3 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 1467KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Deform-3D有限元软件模拟了反复锻压剧烈塑性变形,分析了加工过程中试样的流动、温度、应力以及应变分布。研究发现锻压过程中各部分质点流动的速度大小和方向都不相同。随着起始锻压温度的升高,试样同一部位温升数值逐渐降低。试样内大部分区域在3个方向都承受压应力,有利于细化显微组织的剪切变形始终存在。第一道次锻压完成后试样中应变分布很不均匀,随着加工道次的增加,累积应变及其分布均匀程度都不断提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭炜
王德
付远
陆德平
刘克明
王渠东
张利
关键词:  反复锻压  剧烈塑性变形  模拟  有限元分析    
Abstract: Simulation was performed on repeated forging severe plastic deformation by “Deform-3D” finite element software. The distributions of flow, temperature, stress and strain during processing were analyzed. The results showed that the value and direction of flow velocity for each mass point were different during forging. The value of temperature rise in the same position of sample gradually decreased with the increase of initial forging temperature. Most area of the sample suffered compressive stress in three directions, and shear deformation which was beneficial to refine microstructure always existed. The strain distribution was inhomogeneous in the whole sample after the first pass of forging, and both accumulated strain and strain homogeneity improve as passes number of processing increased.
Key words:  repeated forging    severe plastic deformation    simulation    finite element analysis
               出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG306  
基金资助: 国家自然科学基金(51404151;51561010;51461018;51374145);江西省自然科学基金重大项目(20144ACB20013);江西省科学院科研开发专项基金博士项目(2015-YYB-11);江西省科学院协同创新专项普惠制一类项目(2015-XTPH1-11);江西省国际科技合作项目(20151BDH80006);江西省自然科学基金重点项目(20133BAB20008)
作者简介:  郭炜:男,1981年生,博士,副研究员,主要研究方向为金属剧烈塑性变形 E-mail:guowei053@163.com
引用本文:    
郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
GUO Wei, WANG De, FU Yuan, LU Deping, LIU Keming, WANG Qudong, ZHANG Li. Finite Element Analysis of Repeated Forging Severe Plastic Deformation. Materials Reports, 2017, 31(8): 145-148.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.029  或          http://www.mater-rep.com/CN/Y2017/V31/I8/145
1 Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals[J]. CIRP Ann Manuf Technol,2008,57(2):716.
2 Valiev R Z, Langdon T G. Principles of equal-channel angular pres-sing as a processing tool for grain refinement[J]. Prog Mater Sci,2006,51:881.
3 Zhou Xuyang, Liang Wei, Han Fuyin, et al. Microstructure and creep behavior of ECAPed ZK31+4Si magnesium alloy[J]. Rare Metal Mater Eng,2012,41(5):867(in Chinese).
周旭阳,梁伟,韩富银,等. 等通道转角挤压ZK31+4Si镁合金的显微组织及高温蠕变行为[J]. 稀有金属材料与工程,2012,41(5):867.
4 Guo Wei, Wang Qudong, Ye Bing, et al. Enhanced microstructure homogeneity and mechanical properties of AZ31-Si composite by cyclic closed-die forging[J]. J Alloy Compd,2013,552:409.
5 Fang Xiaoqiang, Li Miaoquan, Lin Yingying. Finite element simulation of equal channel angular pressing of Ti-6Al-4V alloy[J]. J Mater Eng,2007,33(5):102(in Chinese).
方晓强,李淼泉,林莺莺. Ti-6Al-4V钛合金等通道转角挤压的有限元模拟[J].材料工程,2007,33(5):102.
6 Yoon S C, Horita Z, Kim H S. Finite element analysis of plastic deformation behavior during high pressure torsion processing[J]. J Mater Process Technol,2008,201(1-3):32.
7 Inoue T, Yanagida A, Yanagimoto J. Finite element simulation of accumulative roll-bonding process[J]. Mater Lett,2013,106:37.
8 Liu Jun, Guo Xuefeng, Zhang Zhongming, et al. Influences of processing parameters on reciprocating extrusion process of AZ31 magnesium alloy[J]. Mater Eng,2012,40(5):70(in Chinese).
刘君,郭学锋,张忠明,等. 工艺参数对AZ31镁合金往复挤压过程的影响[J]. 材料工程,2012,40(5):70.
9 Guo Wei, Wang Qudong, Ye Bing, et al. Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting[J]. Mater Sci Eng A,2012,540:115.
10 Liu Jianfeng, Wang Qudong, Zhou Hao, et al. Microstructure and mechanical properties of NZ30K magnesium alloy processed by repe-titive upsetting[J]. J Alloy Compd,2014,589:372.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[4] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[5] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[6] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[7] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[8] 汪可华, 陈坚, 王福德, 梁晓康, 孙正明. 材料应力-应变的球形纳米压入法研究进展[J]. 材料导报, 2019, 33(9): 1490-1499.
[9] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[10] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[11] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[12] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[13] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[14] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[15] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed