Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 507-512    
  高分子与聚合物基复合材料 |
高级氧化技术去除水环境中多环芳烃的研究进展
王德军1,2,3, 李慧4, 姜锡仁1,2, 赵朝成3, 赵玉慧1,2, 邓春梅1,2, 王鑫平1,2
1 国家海洋局北海环境监测中心,青岛 266033
2 山东省海洋生态环境与防灾减灾重点实验室,青岛 266033
3 中国石油大学(华东)化学工程学院,青岛 266580
4 青岛职业技术学院,青岛 266555
Review on Removal of Polycyclic Aromatic Hydrocarbons in Aquatic Environment by Advanced Oxidation Technology
WANG Dejun1,2,3, LI Hui4, JIANG Xiren1,2, ZHAO Chaocheng3, ZHAO Yuhui1,2, DENG Chunmei1,2, WANG Xinping1,2
1 North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266033, China
2 Shandong Provincial Key Laboratory of Marine Ecology and Environment & Disaster Prevention and Mitigation, Qingdao 266033, China
3 College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
4 Qingdao Technical College, Qingdao 266555, China
下载:  全 文 ( PDF ) ( 2883KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)由具有亲脂性质及较高解吸活化能的两个或多个苯环组成。它们主要有两种组合方式:一种是非稠环型,即苯环与苯环之间各由一个碳原子相连,如联苯、联三苯等;另一种是稠环型,即两个碳原子为两个苯环所共有,如萘、蒽等。由于其稳定的化学结构和较低的生物利用度,它们是环境中的持久性化合物。PAHs可由自然活动(例如陆地植被合成、微生物合成和火山活动)释放到环境中,但是,与自然火灾和人为来源产生的PAHs相比,这些自然活动释放的PAHs极少。其中人为活动(例如军事行动,车辆排放,农业生产,住宅废物燃烧,化石燃料的燃烧,石油行业的泄漏,炭黑、煤焦油沥青和沥青的制造,供热和发电以及发动机内燃物的排放)向环境中释放了更大量的PAHs。由于PAHs的毒性、致突变性和致癌性,科学家致力于通过研究修复机制来开发适当的工艺,以减轻PAHs对环境和人类健康的可能风险。物理、化学、热、生物和植物修复过程(包括焚化、热解吸、射频加热、氧化、离子交换、光解、吸附、电解、化学沉淀、自然衰减、生物刺激、生物强化、根际过滤、植物萃取、植物固定化和植物降解技术)是多环芳烃污染土壤、沉积物和水的主要处理方法,概括来说即为物理法、生物法和化学法。综合大量参考文献可知,实际操作中的PAHs去除工艺多以生物法或物理法为主。然而,这些方法均有一定程度的缺点,例如高投资和维护成本、复杂的操作程序。另外,有些处理方法在实施过程中会释放次级副产物,其中一些甚至是致癌和致突变的化合物,这将会进一步对公共卫生产生不利影响。化学法现在虽然多停留在实验室研究阶段,但与其它工艺相比有独特的优势,比如可应用范围广、对污染物无选择性、污染物可完全矿化等,是一种高效处理PAHs的有前途的技术。本文总结了近几年来有关通过化学法中的高级氧化技术去除PAHs的文献,详细介绍了各种氧化技术的最新研究进展及反应机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王德军
李慧
姜锡仁
赵朝成
赵玉慧
邓春梅
王鑫平
关键词:  高级氧化技术  多环芳烃(PAHs)  水处理  降解  反应机理    
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are composed of two or more benzene rings with lipophilic properties and high desorption activation energy. They mainly have two combinations. One is non-fused ring type, that is, benzene ring and the benzene rings are connected by a carbon atom, such as biphenyl, terphenyl, etc.; the other is a fused ring type, that is, two carbon atoms are shared by two benzene rings, such as naphthalene, anthracene, etc. They are persistent compounds in the environment due to their chemically stable structure and low bioavailable fraction. PAHs are released into the environment because of natural activities such as terrestrial vegetation synthesis, microbial synthesis, and volcanic activity. However, PAHs released by these processes are minimal in comparison with those produced from forest fires, grass land fires and anthropogenic sources. Anthropogenic activities (such as military operations, vehicular emissions, agricultural production, residential waste burning, combustion of fossil fuels, leakage from the petroleum industry, manufacturing of carbon black, coal tar pitch and asphalt, heating and power generation, and emissions from internal combustion engines) release a significant amount of PAHs into the environment. Due to the toxic, mutagenic, and carcinogenic natures of PAHs, developing appropriate removal process through understanding remediation mechanisms have been researched to mitigate the possible risk of PAHs on the environment and human health. Physical, chemical, thermal, biological and phytoremediation processes (which comprise incineration, thermal desorption, radio frequency heating, oxidation, ion exchange, photolysis, adsorption, electrolysis, chemical precipitation, natural attenuation, biostimulation, bioaugmentation, rhizofiltration, phytoextraction, plant immobilization and phytodegradation techniques) are the major treatment methods of PAHs contaminated soil, sediment and waters. In general, it is the physical, biological, and chemical processes. It can be known that the PAHs removal process in practice is mostly biological or physical by referring to lots of references. However, most of these methods possess several disadvantages such as high investment and maintenance costs, complicated operating procedure. Addi-tionally, some of these treatment processes release the secondary by-products and some of them are carcinogenic and mutagenic compounds which further add an adverse impact on public health. Although the chemical process currently remains at the stage of laboratory, it has unique advantages over the other two processes, such as wider application, non-selective to pollutants, and complete mineralization of pollutants. Therefore, chemical process found to be a more efficient and promising technique to treat PAHs. The paper summarizes the past literature on PAHs removal by advanced oxidation technology, and reviews the latest research progress and reaction mechanism of various oxidation technologies.
Key words:  advanced oxidation technology    polycyclic aromatic hydrocarbons (PAHs)    water treatment    degradation    reaction mechanism
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  X131.2  
基金资助: 青岛市博士后应用研究项目
通讯作者:  wdjhello@163.com   
作者简介:  王德军,2018年毕业于中国石油大学(华东)环境化工专业,获得工学博士学位。现在国家海洋局北海环境监测中心进行博士后研究,研究方向为高级氧化技术治理海洋污染。姜锡仁,研究员,从事海洋环境监测与评价,出版专著多部、主持多项重点项目并参与编制多项标准,在海洋环境监测领域有丰富经验。
引用本文:    
王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
WANG Dejun, LI Hui, JIANG Xiren, ZHAO Chaocheng, ZHAO Yuhui, DENG Chunmei, WANG Xinping. Review on Removal of Polycyclic Aromatic Hydrocarbons in Aquatic Environment by Advanced Oxidation Technology. Materials Reports, 2020, 34(Z2): 507-512.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/507
1 Johnsen A R, Karlson U.Microbial Ecology, 2005, 50(4), 488.
2 Zhang Z L, Hong H S, Zhou J L, et al.Science of the Total Environment, 2004, 323(1), 71.
3 Shin K H, Kim K W, Ahn Y. Journal of Hazardous Materials, 2006, 137(3), 1831.
4 Manoli E, Samara C.Trac Trends in Analytical Chemistry, 1999, 18(6), 417.
5 Zhou W, Wang X, Chen C, et al.Chemical Engineering Journal, 2013, 233(11), 251.
6 Yun H, He Y, Wang X, et al. Applied Surface Science, 2014, 311(9), 825.
7 Li H, Qu R, Chao L, et al.Bioresour Technology, 2014, 163(7), 193.
8 Peng R H, Fu X Y, Zhao W, et al. Environmental Science & Technology, 2014, 48(21), 12824.
9 Sun K, Liu J, Gao Y, et al.Scientific Reports, 2013, 4(Suppl 1), 5462.
10 Jun W, Zaiming C, Baoliang C.Environmental Science & Technology, 2014, 48(9), 4817.
11 Lee H K.Journal of Chromatography A, 1995, 710(1), 79.
12 王连生,孔令仁,韩塑暌. 致癌有机物, 中国环境科学出版社, 1993.
13 唐森本,王欢畅,葛碧洲.环境有机污染物, 冶金工业出版社, 1995.
14 欧阳琼,方战强. 广东化工, 2017, 44(16), 107.
15 孔敏仪. 超声-芬顿降解印染废水中多环芳烃的研究. 硕士学位论文, 广东工业大学, 2018.
16 潘玉兰. Fenton试剂氧化降解水和土壤中多环芳烃. 硕士学位论文, 南京农业大学, 2014.
17 Cuypers C, Grotenhuis T, Joziasse J, et al.Environmental Science & Technology, 2000, 34(10), 2057.
18 Yen C H, Chen K F, Kao C M, et al. Journal of Hazardous Materials, 2011, 186(2-3), 2097.
19 Kun-Chang H, Zhiqiang Z, Hoag G E, et al.Chemosphere, 2005, 61(4), 551.
20 Liang C, Lai M C. Environmental Engineering Science, 2008, 25(7), 1071.
21 Chih-Feng C, Nguyen Thanh B, Chiu-Wen C, et al.Air Repair, 2015, 65(4), 375.
22 Yu S, Gu X, Lu S, et al.Chemical Engineering Journal, 2017, 333, 122.
23 Alvares A B C, Diaper C, Parsons S A.Environmental Technology Letters, 2001, 22(4), 409.
24 Hoigne J, Bader H. Water Research, 1983, 17(2), 173.
25 Elovitz M S, von Gunten U, Kaiser H. Ozone Science & Engineering, 2000, 22(2), 123.
26 Staehelin J, Hoigne J.Environmental Science & Technology, 1982, 10(16), 678.
27 Nemes A, Fábián I, Gordon G. Ozone: Science & Engineering, 2008, 3(22), 287.
28 林冲. 焦化废水外排水中残余组分的环境行为及臭氧氧化过程分析.博士学位论文, 华南理工大学, 2014.
29 Silva P T D S, Silva V L D, Neto B D B, et al. Journal of Hazardous Materials, 2009, 168(2-3), 1269.
30 Tan X M, Ji F Y, Wang X D, et al.Advanced Materials Research, 2012, 518-523, 784.
31 马虹. 油田采出水中多环芳烃的光催化氧化处理方法研究. 硕士学位论文, 华北电力大学, 2012.
32 Turro N J.Modern molecular photochemistry, CA: University Science Books, 1991.
33 Xiaowu, Shao Y. Procedia Earth & Planetary Science, 2017, 17, 348.
34 Shang J, Chen J, Shen Z, et al. Environmental Science & Pollution Research, 2015, 22(16), 12374.
35 Maria W, Wiśniowska E, Turek A, et al.Desalination and Water Treatment, 2016, 57, 1262.
36 Ge L, Na G, Chen C E, et al.Science of the Total Environment, 2016, 547, 166.
37 Verhoeven J. W. Pure and Applied Chemistry, 2009, 68(12), 2223.
38 王德军,赵朝成.材料导报:综述篇, 2015, 29(9), 57.
39 Fujishima A, Honda K.Nature, 1972, 238(5358), 37.
40 Carey J H, Lawrence J, Tosine H M. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6), 697.
41 Karam F F, Hussein F H, Baqir S J, et al. International Journal of Photoenergy, 2014, 2014, 1.
42 Bo L, Bing C, Bai Y Z, et al. Journal of Environmental Engineering, 2016, 142(11), 4016054.
43 Mondal K, Bhattacharyya S, Sharma A. Industrial & Engineering Chemistry Research, 2014, 53(49), 18900.
44 Xiao Z, Cai Z, Wang T, et al.Applied Catalysis B Environmental, 2016, 187, 134.
45 Bai H, Zhou J, Zhang H, et al. Colloids and Surfaces B: Biointerfaces, 2016, 150, 68.
46 Grover I S, Prajapat R C, Singh S, et al.Particuology, 2017, 34(5), 156.
47 Karunakaran C, Kalaivani S, Vinayagamoorthy P, et al.Materials Science in Semiconductor Processing, 2014, 21, 122.
48 Wang X, Zhan S, Wang Y, et al. Journal of Colloid & Interface Science, 2014, 422, 30.
49 Reutergådh L B, Iangphasuk M.Chemosphere, 1997, 35(3), 585.
50 Mahmood M A, Baruah S, Dutta J. Materials Chemistry & Physics, 2011, 130(1-2), 531.
51 Chen H, Wen M, Huang Z, et al.Journal of Materials Chemistry A, 2015, 3(2), 600.
52 Teply' F.Collection of Czechoslovak Chemical Communications,2011, 76(7), 859.
53 王儒威. 环境中有机污染物的有机地球化学及其光催化降解研究.博士学位论文, 中国科学技术大学, 2012.
54 Jie F, Kyzas G Z, Cai Z, et al. Chemical Engineering Journal, 2017, 335, 290.
55 Yang X, Cai H, Bao M, et al.Chemical Engineering Journal, 2017, 334.
56 胡春,贺泓,李俊华,等. 环境催化—原理及应用, 科学出版社, 2008.
57 曲久辉. 水处理电化学原理与技术, 科学出版社, 2007.
58 Feng Z, Feng C, Li W, et al. International Journal of Electrochemical Science, 2014, 9(2), 943.
59 Machado C F C, Gomes M A, Silva R S, et al. Journal of Electroanalytical Chemistry, 2018, 816, 232.
60 Herrada R A, Acosta-Santoyo G, Sepúlveda-Guzmán S, et al.Electrochimica Acta, 2018, 263, 353.
61 Herrada R A, Medel A, Manríquez F, et al. Journal of Hazardous Mate-rials, 2016, 319, 102.
62 Yaqub A, Isa M H, Ajab H, et al.Ecological Chemistry & Engineering, 2017, 24(3), 6672.
63 Asim Y, Hasnain I M, Huma A, et al. Electrochemical Energy Technology, 2018, 4(1), 1.
64 Yaqub A, Isa M H, Ajab H, et al.Petroleum Chemistry, 2017, 57(5), 457.
65 张峰.光催化水处理技术, 化学工业出版社, 2015.
66 Vela N, Martínez-Menchón M, Navarro G, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 232, 32.
67 刘博川,王丽娟,乔梦,等. 环境科学研究, 2017, 30(2), 322.
[1] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[2] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[3] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[4] 赵杰, 钱俊雯, 赵军平. 基于Scopus的生物可降解金属材料文献调研与分析[J]. 材料导报, 2020, 34(Z1): 469-475.
[5] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[6] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[7] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[8] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[9] 王馨博, 苏茹月, 栗丽, 梁国杰, 赵越, 栾志强, 李凯, 习海玲. 锆基金属-有机骨架呼吸道防护材料研究进展[J]. 材料导报, 2020, 34(23): 23121-23130.
[10] 代朝猛, 李思, 段艳平, 刘曙光, 涂耀仁. 微塑料对水体中有机污染物迁移转化及生物有效性的影响研究进展[J]. 材料导报, 2020, 34(21): 21033-21037.
[11] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[12] 王异彩, 张甜, 李媛. 光聚合PEXS-A水凝胶材料的合成及包埋活细胞的性能[J]. 材料导报, 2020, 34(2): 2169-2173.
[13] 李义豪, 吴平霄, 姜璐, 吴沂晓. 高铁酸盐在环境修复中的应用综述[J]. 材料导报, 2020, 34(19): 19003-19009.
[14] 高芸, 向宇姝, 徐国敏, 龙丽娟, 秦舒浩, 于杰. 烷基次磷酸盐及其协效阻燃研究进展[J]. 材料导报, 2020, 34(19): 19190-19196.
[15] 孙宇杰, 刘玉芹, 徐芬, 孙立贤. 尖晶石型金属氧化物的制备及光催化有机污染物降解:综述[J]. 材料导报, 2020, 34(15): 15021-15032.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed