Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 513-515    
  高分子与聚合物基复合材料 |
纤维对酚醛气凝胶材料性能的影响
郭慧, 刘圆圆, 宋寒, 黄红岩, 刘韬, 徐春晓, 张恩爽, 李文静
航天特种材料及工艺技术研究所,北京 100074
Effect of Fibers on the Properties of Fiber Reinforced Phenolic Aerogel Composites
GUO Hui, LIU Yuanyuan, SONG Han, HUANG Hongyan, LIU Tao, XU Chunxiao, ZHANG Enshuang, LI Wenjing
Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074, China
下载:  全 文 ( PDF ) ( 3700KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 酚醛气凝胶复合材料是一种新型热防护材料,可广泛用于航空航天以及民用领域。由于纯酚醛气凝胶强度差,不能直接用于热防护材料,必须通过纤维对其进行增强,以纤维增强酚醛气凝胶复合材料的形式进行应用。增强纤维的性能直接影响酚醛气凝胶复合材料的热物理和力学等性能。本研究采用两种不同长度的纤维构成的纤维预制体制备酚醛气凝胶复合材料,并研究了纤维长度对酚醛气凝胶复合材料的密度、室温热导率、压缩强度、拉伸强度、应变协调性能以及抗烧蚀性能的影响。结果表明,由长度为6 mm的纤维构成的纤维预制体制备的酚醛气凝胶复合材料密度大、室温热导率低,但其压缩强度、拉伸强度、应变协调性能以及烧蚀性能优于由长度为3 mm的纤维构成的纤维预制体制备的酚醛气凝胶复合材料。研究结果为后续酚醛气凝胶复合材料的选材与实际应用提供了技术支撑。本工作通过对不同长度纤维构成的预制体制得的酚醛气凝胶复合材料的表征与分析,明确了增强纤维所采用的纤维长度对酚醛气凝胶复合材料性能的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭慧
刘圆圆
宋寒
黄红岩
刘韬
徐春晓
张恩爽
李文静
关键词:  增强纤维  酚醛气凝胶  热防护  性能    
Abstract: The phenolic aerogel composite is a new type of thermal protection material that can be widely used in aerospace and civil thermal protection. Because pure phenolic aerogel has poor strength and cannot be directly used for thermal protection, it must be reinforced by fibers and applied in the form of fiber reinforced phenolic aerogel composites. The performance of reinforcing fibers directly affects the thermal and physical properties of the phenolic aerogel composite. In this work, two different structural forms of fiber performs were used to prepare phenolic aerogel composites, and the density, thermal conductivity, compressive strength, tensile strength, strain coordination performance and anti-ablative performance of fiber reinforced phenolic aerogel composites were systematically studied. The results show that the phenolic aerogel composite prepared by 6 mm fiber preform with high ratio of continuous fiber and high density has high density and low thermal conductivity at room temperature, but its compressive strength, tensile strength, strain coordination performance and ablation performance are excellent than that prepared by 3 mm fiber. The research results provide technical support for the practical application of the subsequent phenolic aerogel composites. This work characterized and analyzed the properties of phenolic aerogel composites obtained from different fiber preforms, and clarified the effect of reinforcing fibers on the performance of phenolic aerogel composites.
Key words:  fiber    phenolic aerogel    thermal protection    properties
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  V45  
通讯作者:  guohuihit@163.com   
作者简介:  郭慧,航天特种材料及工艺技术研究所高级工程师。2006年9月至2010年1月,在哈尔滨工业大学获得化学工程与技术工学博士学位,毕业后就职于航天特种材料及工艺技术研究所。以第一作者申请国家发明专利十余项,授权8项。研究工作主要围绕国家重点发展的纳米材料及热防护材料研制及工程应用,工作期间承担了多个重点项目的研究。
引用本文:    
郭慧, 刘圆圆, 宋寒, 黄红岩, 刘韬, 徐春晓, 张恩爽, 李文静. 纤维对酚醛气凝胶材料性能的影响[J]. 材料导报, 2020, 34(Z2): 513-515.
GUO Hui, LIU Yuanyuan, SONG Han, HUANG Hongyan, LIU Tao, XU Chunxiao, ZHANG Enshuang, LI Wenjing. Effect of Fibers on the Properties of Fiber Reinforced Phenolic Aerogel Composites. Materials Reports, 2020, 34(Z2): 513-515.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/513
1 Gesser H D, Goswami P C. Chemical Reviews,1989,89(4),765.
2 Hench L L,West J K. Chemical Reviews,1990, 90(1),33.
3 Pekala R W. Journal of Materials Science,1989,24(9), 3221.
4 Pekala R W, Kong F M. Polymer Preprints,1989,30(1),221.
5 沈军, 王珏, 吴翔. 物理学报,1996,45(9),1501.
6 Kistler S S. Nature,1931,127,74.
7 Akimov Y K.Instruments and Experimental Techniques, 2003, 46(3),287.
8 Lawrence W H. Journal of Non-crystalline Solids, 1998,225,335.
9 Jia X F, Dai B W, Zhu Z X, et al.Carbon,2016,108,551.
10 师建军,严蛟,孔磊,等.高分子学报,2015(2),179.
11 Long D H, Zhang J, Yang J H. New Carbon Materials, 2008, 23(2),165.
12 Zhang R, Li W, Liang X Y, et al. Microporous and Mesoporous Mate-rials,2003,62(1-2),17.
13 Mirzaeian M, Hall P J. Journal of Materials Science,2009,44(10),2705.
14 Pekala R W, Mayer S T, Kaschmitter J L, et al. Sol-gel processing and application, Plenum Press, USA, 1994.
15 吴丁财,余志铨,符若文.功能材料,2004,35(z1),2679.
16 Wu D C,Fu R W.Journal of Porous Materials,2008,15,29.
17 蒋伟阳,张波,周斌,等.材料科学与工艺,1966,4(2),70.
18 Saliger R,Bock V,Petricevic R,et al. Journal of Non-crystalline Solids,1997,221(2-3), 144.
19 Pekala R W, Alviso C T, Lu T, et al. Journal of Non-crystalline Solids,1995,188(1-2),34.
20 Perez-Caballero F, Peikolainen A L, Koel M. Proceedings of the Estonian Academy of Sciences, 2008,57(1),48.
21 Li W C, Lu A H, Guo S C.Carbon,2001,9(13),1989.
[1] 宋显珠, 郑明月, 肖劲松, 张镇. 氢燃料电池关键材料发展现状及研究进展[J]. 材料导报, 2020, 34(Z2): 1-5.
[2] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[3] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[4] 胡向平, 李建新, 杨斌, 沈义梅, 徐光以, 许佩琪, 荣幸, 孟繁艳. Nb2O5原料对H-ZF类高折射率玻璃透过性能的影响因素[J]. 材料导报, 2020, 34(Z2): 138-141.
[5] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[6] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[7] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[8] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[9] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[10] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[11] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[12] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[13] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[14] 路建宁, 王娟, 林颖菲, 郑开宏, 王海艳. 表面氧化处理对SiC/A356 Al复合材料组织及性能的影响[J]. 材料导报, 2020, 34(Z2): 381-385.
[15] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed