Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20053-20060    https://doi.org/10.11896/cldb.19090028
  无机非金属及其复合材料 |
干湿循环与风沙吹蚀作用下风积沙混凝土的抗硫酸盐耐久性
董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思
内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018
Sulfate Durability of Aeolian Sand Concrete Under Dry-Wet Cycles and Sand Blowing
DONG Ruixin, SHEN Xiangdong, XUE Huijun, LIU Qian, WEI Lisi
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
下载:  全 文 ( PDF ) ( 4743KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 选取内蒙古自治区乌兰布和沙漠的风积沙作为细骨料,用掺量为40%的风积沙替代部分河砂,运用扫描电子显微镜和X射线衍射技术观测并分析风积沙混凝土的微观形貌和物相成分,采用核磁共振技术对风积沙混凝土孔隙结构特征进行测试分析,并对其耐久性进行寿命预测。研究表明:风积沙混凝土在耦合工况下的质量损失较单一干湿循环作用下的质量损失增加了2.21倍,耦合工况下的抗压耐蚀系数曲线始终在单一干湿循环作用下的抗压耐蚀系数曲线下方;D120的最大侵蚀深度为1.66 mm,D120S8的沟壑深度为3.51 mm;经过干湿循环120次后,单一干湿作用的水泥浆体出现长度为9 μm的细长裂缝,耦合工况中出现长度为18~36 μm的贯通裂缝,腐蚀结晶物多为硫酸盐和碳酸盐;两种工况下T2谱主要呈现两个峰,风积沙混凝土的孔隙在耦合作用下的增长速率大于在单一干湿循环作用下的增长速率;随着干湿循环次数的增加,小孔隙减少,大孔隙增多,其内部的小孔隙向大孔隙转化,孔隙度都与自由流体饱和度的变化规律成正比;通过寿命预测模型求得风积沙混凝土的服役时间为125 a,该研究可为风积沙混凝土在风蚀区硫酸盐环境下的工程建设提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董瑞鑫
申向东
薛慧君
刘倩
维利思
关键词:  风积沙混凝土  干湿循环  风沙吹蚀  微观形貌  物相成分  孔隙特征  寿命预测    
Abstract: Aeolian sands from Ulan Buh Desert in Inner Mongolia Autonomous Region were selected as fine aggregates, 40% do sage of aeolian sand was used to replace part of river sand, and scanning electron microscopy and X-ray diffraction techniques were used to observe and analyze the microscopic morphology of aeolian sand concrete. The phase composition was tested by NMR technique on the pore structure characteristics of aeolian sand concrete, and its durability was predicted. The research shows that the mass loss of aeolian sand concrete under coupling conditions is 2.21 times higher than that under a single dry-wet cycle. The curve of compressive and corrosion resistance under coupling conditions is always lower than that of single dry-wet cycle; the maximum erosion depth of D120 is 1.66 mm, the depth of the ditch of D120S8 is 3.51 mm; after 120 cycles of dry and wet cycles, a 9 μm slender crack appears in the cement slurry of single dry and wet action, and a through crack of 18—36 μm appears in the coupling condition. Most of the corrosion crystallization materials are sulfate and carbonate; the T2 spectrum mainly shows two peaks under the two conditions. The pore growth rate of aeolian sand concrete under coupling is greater than that of single dry-wet cycle; with the increase of the number of dry-wet cycles, small pores decrease, the large pores increase, transforming the small pores into large pores, and the porosity is proportional to the change of free fluid saturation; the service life of the aeolian sand concrete is 125 a by the life prediction model. This paper provides theoretical basis for the construction of aeolian sand concrete in the sulfate environment of wind erosion area.
Key words:  aeolian sand concrete    dry-wet cycle    wind-blown erosion    micro-morphology    phase composition    pore characteristics    life prediction
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51769025;51569021);内蒙古自然科学基金(2020BS05008)
通讯作者:  ndsxd@163.com   
作者简介:  董瑞鑫,2017年6月毕业于河北农业大学,获得学士学位。于2017年9月至2020年6月在内蒙古农业大学攻读硕士学位,主要从事新型建筑材料和混凝土耐久性研究。
申向东,内蒙古力学学会副理事长,教授,博士研究生导师,内蒙古农业大学土木工程学科主任。1982年在原内蒙古农牧学院取得学士学位;1989—1990年在河海大学学习工程力学课程。主要从事新型建筑材料和混凝土耐久性研究,重点研究新材料与新结构体系,混凝土耐久性等。发表论文180余篇,其中SCI/EI收录35篇。
引用本文:    
董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思. 干湿循环与风沙吹蚀作用下风积沙混凝土的抗硫酸盐耐久性[J]. 材料导报, 2020, 34(20): 20053-20060.
DONG Ruixin, SHEN Xiangdong, XUE Huijun, LIU Qian, WEI Lisi. Sulfate Durability of Aeolian Sand Concrete Under Dry-Wet Cycles and Sand Blowing. Materials Reports, 2020, 34(20): 20053-20060.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090028  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20053
1 Yu H F, Sun W, Wu W F, et al. Journal of the Chinese Ceramic Society, 2003(8), 763(in Chinese).
余红发, 孙伟, 武卫锋, 等. 硅酸盐学报, 2003(8), 763.
2 Zhang P X, Zhang B Z, Tang Y, et al. Natural resources of salt lakes in China and their development and utilization, Science Press, China,1999(in Chinese).
张彭熹, 张保珍, 唐渊, 等. 中国盐湖自然资源及其开发利用,科学出版社, 1999.
3 Zhang R, Wu L G. Evaluation and management of groundwater resources, Tongji University Press, China, 1997(in Chinese).
张瑞, 吴林高. 地下水资源评价及管理,同济大学出版社, 1997.
4 Clifton J R, Knab L I. Service life of concrete, Washington U S Nuclear Regulatory Commission Press, 1989.
5 Cody R D, Cody A M, Spry P G, et al. Reduction of concrete deterioration by ettringite using crystal growth inhibition techniques, Iowa Iowa State University Press, 2001.
6 Ye H, Jin X, Fu C, et al. Construction and Building Materials, 2016, 112,457.
7 Li Y Q, Ba M F, Liu J Z, et al. Acta Materiae Compositae Sinica, 2017, 34(12), 2856(in Chinese).
李永强, 巴明芳, 柳俊哲, 等. 复合材料学报, 2017, 34(12),2856.
8 State Forestry Administration. The fifth national desertification and desertification land detection situation, China Forestry Network, China,2015(in Chinese).
国家林业局. 第五次全国沙漠化和沙化土地检测情况, 中国林业网, 2015.
9 Jiang H G. In: 2018 Academic Annual Meeting of China Sand Control and Sand Industry Association. Qinghai, China, 2018,pp. 7(in Chinese).
姜海光.中国治沙暨沙业学会2018年学术年会. 中国青海, 2018,pp.7.
10 Liu J T, Zheng M Q. Plateau Meteorology, 2003, 22(1), 51(in Chinese).
刘景涛, 郑明倩.高原气象, 2003, 22(1),51.
11 Wang W J. In:35th Annual Meeting of Chinese Meteorological Society. Anhui, China, 2018,pp. 2(in Chinese).
王文娟.第35届中国气象学会年会.安徽, 2018,pp. 2.
12 Wu J C, Shen X D, Dong W, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(10), 2845(in Chinese).
吴俊臣, 申向东, 董伟, 等. 硅酸盐通报, 2015, 34(10),2845.
13 Ameta N K, Wayal A S, Hiranandani P. American Journal of Cancer Research, 2013, 2(9), 133.
14 Elipe M G M, Lopez-Querol S.Construction and Building Materials, 2014, 73, 728.
15 Duan Hanchen, Wang Tao, Xue Xian, et al. Environmental Monitoring and Assessment, 2014, 186, 6083.
16 Xue H J, Shen X D, Wang R Y, et al. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(18), 118(in Chinese).
薛慧君, 申向东, 王仁远, 等. 农业工程学报, 2017, 33(18),118.
17 Zou Y X, Shen X D, Li G F, et al. Journal of Building Materials, 2018, 21(5), 817(in Chinese).
邹欲晓, 申向东, 李根峰, 等.建筑材料学报, 2018, 21(5),817.
18 Seif E S S A. Arabian Journal of Geosciences, 2011, 6(3), 857.
19 Luo F J, He L, Pan Z, et al. Construction and Building Materials, 2013, 47(5),131.
20 Wu J C, Shen X D. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10), 184(in Chinese).
吴俊臣, 申向东.农业工程学报, 2017, 33(10),184.
21 Dong Wei, Shen Xiangdong, Xue Huijun, et,al. Construction and Buil-ding Materials, 2016, 123, 792.
22 Xue H J, Shen X D, Liu Q, et al. Journal of Advanced Concrete Techno-logy, 2017, 15,724.
23 Wang R Y, Shen X D, Xue H J, et al. Journal of Basic Science and Engineering, 2019, 27(2), 418(in Chinese).
王仁远, 申向东, 薛慧君, 等. 应用基础与工程科学学报, 2019, 27(2),418.
24 中华人民共和国建设部.普通混凝土力学性能试验方法标准:GB/T 50081-2002,中国建筑工业出版社,2003.
25 中国建筑科学研究院.普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082-2009, 中国建筑工业出版社,2010.
26 Rashwan M H, Abou-Zeid M N. Transportation Research Record Journal of the Transportation Research Board, 2012, 10,122.
27 Qian J S, Yu J C, Sun H Q, et, al. Journal of the Chinese Ceramic Society, 2017, 45(11),1569(in Chinese).
钱觉时, 余金城, 孙化强, 等.硅酸盐学报, 2017, 45(11),1569.
28 Tian G F, Leng F G, Zhang R Y, et al. Equipment Environmental Engineering, 2007, 10 (5),10(in Chinese).
田冠飞, 冷发光, 张仁瑜, 等. 装备环境工程, 2007, 10 (5),10.
29 Winkler E M. Stone: properties, durability in man’s envionment, Sprin-ger Verlag, New York, 1975.
30 Tyrologou P, Dudeney A W L, Grattoni C A. Magnetic Resonance Imaging, 2005, 23(6), 765.
31 Li J L, Zhou K P, Zhang Y M, et al. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6), 1208(in Chinese).
李杰林, 周科平, 张亚民, 等. 岩石力学与工程学报, 2012, 31(6),1208.
32 Wu Z W, Lian H Z. High performance concrete, Railway Press, China,2005(in Chinese).
吴中伟, 廉慧珍. 高性能混凝土,中国铁道出版社, 2005.
33 Liu W, Xing L, Sun D Q, et al. NMR logging, Oil Industry Press, China,2011(in Chinese).
刘卫, 邢立, 孙佃庆, 等. 核磁共振录井,石油工业出版社, 2011.
34 Cano-Barrita J, Castellanos F, Ramirez-Arellanes S, et al. ACI Materials Journal, 2015, 112(1), 147.
35 Du Y J. Study on durability and life prediction of concrete in metro engineering. Master’s Thesis,Hohai University, China, 2005(in Chinese).
杜应吉. 地铁工程混凝土耐久性研究与寿命预测. 硕士学位论文,河海大学, 2005.
36 Du Y J, Li Y T. Journal of Northwest A&F University (Natural Science Edition), 2004(12),100(in Chinese).
杜应吉, 李元婷.西北农林科技大学学报(自然科学版), 2004(12),100.
37 Jiang X G, Shen J G, Liu J T, et al. Acta Meteorologica Sinica, 2003(5), 606(in Chinese).
姜学恭, 沈建国, 刘景涛, 等. 气象学报, 2003(5), 606.
38 Liu C X. Journal of Yangtze River Scientific Research Institute, 2000, 35(4), 20(in Chinese).
刘崇熙. 长江科学院院报, 2000, 35(4),20.
[1] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[2] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[3] 董瑞鑫, 申向东, 薛慧君, 刘倩. 干湿循环作用下风积沙混凝土的抗硫酸盐侵蚀机理[J]. 材料导报, 2020, 34(24): 24040-24044.
[4] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[5] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[6] 罗妍钰,李才亮,陈国华. 螺旋碳纤维的制备:形貌控制与生长机理[J]. 《材料导报》期刊社, 2018, 32(9): 1442-1451.
[7] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[8] 董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅱ:耐久性能及寿命预测模型[J]. 《材料导报》期刊社, 2018, 32(3): 496-502.
[9] 潘慧敏,付军,赵庆新. 硬化期受扰动混凝土的抗硫酸盐侵蚀性能[J]. 《材料导报》期刊社, 2018, 32(2): 282-287.
[10] 董越, 杨晓炳, 高谦. 基于图像法分析孔隙特征对加气充填砼性能的影响[J]. 材料导报, 2018, 32(18): 3128-3134.
[11] 陶德彪, 蒋林华, 金鸣, 白舒雅, 姜少博. 银/氯化银电极用于监测混凝土中氯离子含量的研究*[J]. 《材料导报》期刊社, 2017, 31(20): 101-106.
[12] 薛媛, 但年华, 但卫华. 多孔胶原-β-磷酸三钙-硫酸软骨素复合膜的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(2): 8-12.
[13] 朱麟,刘新宝,辛甜,潘成飞,刘剑秋. 基于微观组织演化的P91钢长时蠕变寿命预测*[J]. 材料导报编辑部, 2017, 31(10): 137-140.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed