Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 72-76    https://doi.org/10.11896/j.issn.1005-023X.2017.05.012
  材料综述 |
钛合金中ω相变的研究进展*
林成1, 于佳石1, 尹桂丽1, 张爱民1, 赵志伟1, 黄士星1, 赵永庆2, 郭丽丽3
1 辽宁工业大学材料科学与工程学院,锦州 121001;
2 西北有色金属研究院,西安 710016;
3 锦州锦恒汽车安全系统有限公司,锦州 121007
Omega Phase Transformation in Titanium Alloys: A Review
LIN Cheng1, YU Jiashi1, YIN Guili1, ZHANG Aimin1, ZHAO Zhiwei1,
HUANG Shixing1, ZHAO Yongqing2, GUO Lili3
1 College of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001;
2 Northwest Institute for Nonferrous Metal Research, Xi’an 710016;
3 Jinzhou Jinheng Automotive Safety System Co.Ltd, Jinzhou 121007
下载:  全 文 ( PDF ) ( 1587KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛合金中的ω相及其相变对合金的组织性能影响较大,因此近年来ω相变也成为钛合金研究中的热点问题之一。从ω相的形成、分解、组织形貌以及ω相辅助α形核的角度总结归纳了相关研究报道,对比了相关模型观点的优缺点,阐述了ω相目前仍存在的学术分歧。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林成
于佳石
尹桂丽
张爱民
赵志伟
黄士星
赵永庆
郭丽丽
关键词:  钛合金  相变  ω相  ω相辅助形核    
Abstract: The ω phase and its phase transformation in titanium alloys have great influence on the microstructure and properties of the alloys. Therefore, the study of ω phase transformation in titanium alloys becomes one of the hot issues in recent years. In this paper, the related research reports are summarized, including ω phase formation, ω phase decomposition, ω phase morphology and ω -assisted α nucleation. The advantages and disadvantages of the related models are compared, and some scientific problems with academic disputations are expounded.
Key words:  titanium alloy    phase transformation    ω phase    ω-assisted nucleation
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51201084);辽宁省自然科学基金(SY2016006)
作者简介:  林成:男,1979年生,博士,副教授,主要从事计算材料学和钛合金、钢铁材料组织性能的研究 E-mail: Cheng_lin1979@163.com
引用本文:    
林成, 于佳石, 尹桂丽, 张爱民, 赵志伟, 黄士星, 赵永庆, 郭丽丽. 钛合金中ω相变的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 72-76.
LIN Cheng, YU Jiashi, YIN Guili, ZHANG Aimin, ZHAO Zhiwei, HUANG Shixing, ZHAO Yongqing, GUO Lili. Omega Phase Transformation in Titanium Alloys: A Review. Materials Reports, 2017, 31(5): 72-76.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.012  或          http://www.mater-rep.com/CN/Y2017/V31/I5/72
1 Banerjee D, William J C. Perspectives on titanium science and technology [J]. Acta Mater, 2013,61(3):844.
2 Tegner B E, Zhu L G, Ackland G J. Relative strength of phase stabilizers in titanium alloys [J]. Phys Rev B,2012,85:214106.
3 Devaraj A, Nag S, Banerjee R. Alpha phase precipitation from phase-separated beta phase in a model Ti-Mo-Al alloy studied by direct coupling of transmission electron microscopy and atom probe tomography[J]. Scr Mater,2013,69(7):513.
4 Kobayashi S, Takeichi T, Nakai K, et al. Acceleration or suppression of α-phase precipitation using isothermal ω phase in Ti-20 at.pct Nb alloy[J]. Metall Mater Trans A,2014,45(3):1217.
5 Santhosh R, Geetha M, Saxena V K, et al. Studies on single and duplex aging of metastable beta titanium alloy Ti-15V-3Cr-3Al-3Sn [J]. J Alloys Compd,2014,605(8):222.
6 Zhang L C, Zhou T, et al. Nucleation of stress-induced martensites in a Ti/Mo-based alloy [J]. J Mater Sci,2005,40 (11):2833.
7 赵永庆, 陈永楠, 张学敏,等. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.
8 Zhang Tingjie. Transition electronic microscope studies on titanium alloy phase (Ⅳ)——Omega phase transformation of titanium alloy [J]. Rare Metal Mater Eng,1989,18(5):77(in Chinese).
张廷杰. 钛合金相变的电子显微镜研究(Ⅳ)——钛合金中的ω相变[J]. 稀有金属材料工程,1989,18(5):77.
9 Azmzadeh S, Rack H J. Phase transformations in Ti-6.8Mo-4.5Fe-1.5Al [J]. Metall Mater Trans A,1998,29(10):2455.
10 Xing H, Sun J. Mechanical twinning and omega transition by 〈111〉{112} shear in a metastable β titanium alloy [J]. Appl Phys Lett,2008,93:031908.
11 Ohmori Y, Ogo T, Nakai K, et al. Effects of ω-phase precipitation on β→α, α′′ transformations in a metastable β titanium alloy [J]. Mater Sci Eng A,2001,312(1-2):182.
12 Yeddu H K, Zong H X, Lookman T. Alpha-omega and omega-alpha phase transformations in zirconium under hydrostatic pressure: A 3D mesoscale study[J]. Acta Mater,2016,102:97.
13 Dubinskiy S,Korotitskiy A,Prokoshkin S,et al.In situ X-ray diffraction study of athermal and isothermal omega-phase crystal lattice in Ti-Nb-based shape memory alloys [J]. Mater Lett,2016,163:155.
14 Silcock J M. An X-ray examination of the to phase in TiV, TiMo and TiCr alloys[J]. Acta Metall,1958,6(7):481.
15 Duerig T W, Terlinde G T, Willams J C. Phase transformations and tensile properties of Ti-10V-2Fe-3Al [J]. Metall Mater Trans A,1980,11(12):1987A.
16 Fontaine D de, Paton N E, Williams J C. The omega phase transformation in titanium alloys as an example of displacement controlled reactions [J]. Acta Metall,1971,19(11):1153.
17 Fontaine D de. Simple models for the omega phase transformation [J]. Metall Trans A,1998,19A(11):169.
18 Cook H E. A theory of the omega transformation [J]. Acta Metall,1974,22(2):239.
19 Tewari R, Srivastava D, Dey G K, et al. Microstructural evolution in zirconium based alloys[J]. J Nuclear Mater,2008,383(1-2):153.
20 Lin C, Yin G L, Zhang A M, et al. Simple models to account for the formation and decomposition of athermal omega phase in titanium alloys [J]. Scr Mater,2016,117(5):28.
21 Prima F, Debuigne J, Boliveau M, et al. Control of omega phase volume fraction precipitated in a beta titanium alloy: Development of an experimental method [J]. J Mater Sci Lett,2000,19:2219.
22 Devaraj A, Nag S, Srinivasan R, et al. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys [J]. Acta Mater,2012,60(2):596.
23 Hanada S, Ozeki M, Izumi O. Deformation characteristics in β phase Ti-Nb alloys [J]. Metall Trans A,1985,16(5):789.
24 Hanada S, Izumi O. Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys [J]. Metall Trans A,1986,17(8):1409.
25 Oka M, Taniguchi Y. {332} deformation twins in a Ti-15.5 pct V alloy [J]. Metall Trans A,1979,10(5):651.
26 Wang X L, Li L, Mei W, et al. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β-Ti-V alloys [J]. Mater Charact,2015,107(9):149.
27 Wang X L, Li L, Xing H, et al. Role of oxygen in stress-induced ω phase transformation and {332}〈113〉mechanical twinning in βTi-20V alloy [J]. Scr Mater,2015,96(2):37.
28 Chang Hui, Zhou Lian, Zhang Tingjie. Review of solid phase transformation in titanium alloys[J]. Rare Metal Mater Eng,2007,36(9):1505(in Chinese).
常辉, 周廉, 张廷杰. 钛合金固态相变的研究进展[J]. 稀有金属材料与工程, 2007, 36(9): 1505
29 Kim S H, Kang S J, Park M H, et al. Vacancy-mediated ω-assisted α-phase formation mechanism in titanium-molybdenum alloy [J]. Acta Mater,2015,83:499.
30 Qiu D, Zhang M X, Kelly P, et al. Discovery of plate-shaped athermal ω phase forming pairs with α′ martensite in a Ti-5.26 wt.% Cr alloy[J]. Scripta Mater,2013,69(10):752.
31 Sun F, Prima F, Gloriant T. High-strength nanostructured Ti-12Mo alloy from ductile metastable beta state precursor [J]. Mater Sci Eng A,2010,527(16-17):4262.
32 Zheng Y F, Williams R E A, Wang D, et al. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys[J]. Acta Mater,2016,103:850.
33 Zhou Z B, Lai M J, Tang B, et al. Non-isothermal phase transformation kinetics of ω phase in TB-13 titanium alloys [J]. Mater Sci Eng A,2010,527(20):5100.
34 Xu W, Wu X, Stocia M, et al. On the formation of an ultrafine-duplex structure facilitated by severe shear deformation in Ti-20Mo β-type titanium alloy [J]. Acta Mater,2012,60(13-14):5067.
35 Nag S, Banerjee R, Srinivasan R,et al. ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy[J]. Acta Mater,2009,57(7):2136.
36 Furuhara T, Maki T, Makino T. Microstructure control by thermomechanical processing in β-Ti-15-3 alloy [J]. J Mater Process Technol, 2001,117(3):318.
37 Prima F, Vermaut P, Texier G, et al. Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy [J]. Scripta Mater,2006,54(4):645.
[1] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[2] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[3] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[4] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[5] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[6] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[7] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[8] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[9] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[10] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[11] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[12] 刘强, 惠松骁, 宋生印, 叶文君, 于洋. 油气开发用钛合金油井管选材及工况适用性研究进展[J]. 材料导报, 2019, 33(5): 841-853.
[13] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[14] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[15] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed