Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 111-114    https://doi.org/10.11896/j.issn.1005-023X.2017.04.024
  材料研究 |
添加La2O3对粉煤灰合成Al2O3-SiC复合粉体的影响*
尹月1, 马北越1, 张博文1, 李世明1, 于景坤1, 张战2, 李光强2
1 东北大学冶金学院, 沈阳 110819;
2 武汉科技大学,省部共建耐火材料与冶金国家重点实验室,钢铁冶金及资源利用省部共建教育部重点实验室, 武汉 430081
Effect of La2O3 Addition on Synthesis of Al2O3-SiC Composite
Powders from Fly Ash
YIN Yue1, MA Beiyue1, ZHANG Bowen1, LI Shiming1, YU Jingkun1,
ZHANG Zhan2, LI Guangqiang2
1 School of Metallurgy, Northeastern University, Shenyang 110819;
2 The State Key Laboratory of Refractories and Metallurgy, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081
下载:  全 文 ( PDF ) ( 1369KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以粉煤灰和活性炭为原料,通过碳热还原反应在Ar气氛下合成Al2O3-SiC粉体,探究了一条低成本合成Al2O3-SiC粉体的可行途径。研究了添加La2O3对合成过程的影响。采用XRD和SEM表征了材料的物相组成和显微形貌。结果表明:当粉煤灰与活性炭质量比为100∶44,在1 550 ℃下保温5 h,添加6%(质量分数)的La2O3时,可合成性能良好的Al2O3-SiC粉体,颗粒分布均匀,平均粒径为0.5~1 μm,较不添加La2O3合成温度降低约50 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹月
马北越
张博文
李世明
于景坤
张战
李光强
关键词:  粉煤灰  碳热还原反应  Al2O3-SiC  La2O3    
Abstract: Al2O3-SiC powders were synthesized by carbothermal reduction reaction in an argon atmosphere, with fly ash and activated carbon as raw materials. It provides a feasibility route with low-cost to the synthesis of Al2O3-SiC powders. The influence of La2O3 addition on the synthesis process was studied. The phase composition and microstructure of the powders were characterized by XRD and SEM. Results showed that the Al2O3-SiC powders could be synthesized at 1 550 ℃ for 5 h, when the mass ratio of fly ash to activated carbon was 100∶44 with addition of 6% La2O3 (mass fraction). The powders had good performance, uniform particle distribution, and the average particle size was about 0.5-1 μm. The synthesis temperature of composite powder with La2O3 was 50 ℃ lower than that of the mixture without La2O3.
Key words:  fly ash    carbothermal reduction reaction    Al2O3-SiC    La2O3
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TB332  
基金资助: *钢铁冶金及资源利用省部共建教育部重点实验室开放基金(武汉科技大学)(FMRU201401);中央高校基本科研业务费专项资金(N150204021)
通讯作者:  马北越:通讯作者,男,1978年生,博士,副教授,主要从事高技术陶瓷与耐火材料等方面的研究 E-mail:maby@smm.neu.edu.cn   
作者简介:  尹月:男,1991年生,硕士研究生,研究方向为粉煤灰资源材料化利用 E-mail:15702414720@163.com
引用本文:    
尹月, 马北越, 张博文, 李世明, 于景坤, 张战, 李光强. 添加La2O3对粉煤灰合成Al2O3-SiC复合粉体的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 111-114.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.024  或          http://www.mater-rep.com/CN/Y2017/V31/I4/111
1 Ma B Y, Li Y, Yan C, et al. Effects of synthesis temperature and raw materials composition on preparation of β-Sialon based compo-sites from fly ash [J]. Trans Nonferr Met Soc China,2012,22(1):129.
2 Ahmaruzzman M. A review on the utilization of fly ash [J]. Prog Energy Combust Sci,2010,36(3):327.
3 Yin Y, Ma B Y, Zhang Z, et al. Research situation of high value utilization of coal ash [J]. Mater Res Appl,2015,9(3):158(in Chinese).
尹月,马北越,张战,等. 粉煤灰高附加值利用的研究现状[J]. 材料研究与应用,2015,9(3):158.
4 Xing J, Li J H, Wei Z L. Effect of Y2O3 on synthesizing mullite from high alumina fly ash [J]. Bull Chin Ceram Soc,2007,26(2):291(in Chinese).
邢净,李金洪,魏尊莉. Y2O3对高铝粉煤灰合成莫来石的影响[J]. 硅酸盐通报,2007,26(2):291.
5 Zhao H, Wang P Y, Yu J L, et al. A mechanistic study on the synthesis of β-Sialon whiskers from coal fly ash [J]. Mater Res Bull,2015,65:47.
6 Gilbert J E, Mosset A. Preparation of β-Sialon from fly ashes [J]. Mater Res Bull,1998,33(1):117.
7 Ma B Y, Li Y, Cui S G, et al. Preparation and sintering properties of zirconia-mullite-corundum composites using fly ash and zircon [J]. Trans Nonferr Met Soc China,2010,20(12):2331.
8 Liu J, Dong Y C, Dong X F, et al. Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports with addition of dolomite [J]. J Eur Ceram Soc,2016,36(4):1059.
9 Zhu Q, Yu J K. Synthesis of SiC-Al2O3 refractory commposite powder [J]. J Chin Ceram Soc,2008,36(1):40.
10 Xu S, Wang X T, Wang Z F, et al. Synthesis of Al2O3-SiC compo-site materials from waste clay brick powder [J]. Rare Met Mat Eng,2007,36(S2):586(in Chinese).
徐圣,王玺堂,王周福,等. 用耐火粘土废砖粉制备Al2O3/SiC复相陶瓷材料的研究[J]. 稀有金属材料与工程,2007,36(S2):586.
11 Wang C S, Zou Z G, Gu T, et al. In-situ synthesis of SiCw/Al2O3 ceramic composite powder from natural kaolinite [J]. J Mater Eng,2006(12):11(in Chinese).
王朝胜,邹正光,顾涛,等. 天然高岭土原位还原制备SiCw/Al2O3复相陶瓷粉末[J].材料工程,2006(12):11.
12 Ma B Y, Zhu Q, Sun Y, et al. Synthesis of Al2O3-SiC composite and its effect on the properties of low-carbon MgO-C refractories [J]. J Mater Sci Technol,2010,26(8):715.
13 Han B Q, Li N. Preparation of β-SiC/Al2O3 composite from kaoli-nite gangue by carbothermal reduction [J]. Ceram Int,2005,31(2):227.
14 陈肇友. 化学热力学与耐火材料[M]. 北京: 冶金工业出版社,2005:494.
15 Li X L, Wang J, Ji H M, et al. Catalytic effect and mechanism of Fe2O3 on synthesis of Si2N2O by carbothermal reduction and nitridation of SiO2[J]. Aerosp Mater Technol,2012(2):95(in Chinese).
李晓雷,王健,季惠明,等. Fe2O3对碳热还原氮化SiO2合成Si2N2O的催化效应及机理[J]. 宇航材料工艺,2012(2):95.
16 Zou Z G, He Z X, Yu S J. Synthesis of Al2O3/SiC composite in carbothermal reaction of nature mineral of kaolinite [J]. Bull Chin Ceram Soc,2004(4):110(in Chinese).
邹正光,何曾先,余石金. 天然高岭土碳热还原制备Al2O3/SiC复相陶瓷粉[J].硅酸盐通报,2004(4):110.
17 Li Y W, Li N, Li W Z, et al. Synthesis of Al2O3/SiC composite in carbothermal reduction of clay mineral [J]. China Ceram,2000,36(3):13(in Chinese).
李亚伟,李楠,李文忠,等. 碳热还原粘土合成Al2O3/SiC复相陶瓷粉末[J]. 中国陶瓷,2000,36(3):13.
18 Cao H S, Chen S O, Shao W Q, et al. Effect of rare earth dopant on phase transformation and sintering behavior of γ-Al2O3 [J]. Bull Chin Ceram Soc,2008,27(5):924(in Chinese).
曹红诗,陈沙鸥,邵渭泉,等. 稀土掺杂对γ-Al2O3相变及烧结行为的影响[J]. 硅酸盐通报,2008,27(5):924.
19 Fu C, Wang J B, Yang M G, et al. Effect of La doping on microstructure of SnO2 nanopowders prepared by co-precipitation method [J]. J Non-Cryst Solids,2011,357(3):1172.
20 Ma B Y, Yu J K. Phase composition of SiC-ZrO2 composite materials synthesized from zircon doped with La2O3[J]. J Rare Earths,2009,27(5):806.
[1] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[2] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[3] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[4] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[5] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[6] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[7] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[8] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[9] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[10] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[11] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[12] 李北罡,王 敏. Fe/CTS/AFA复合材料对染料的高效吸附[J]. 《材料导报》期刊社, 2018, 32(10): 1606-1611.
[13] 张耀君, 余淼, 张力, 张懿鑫, 康乐. 一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*[J]. CLDB, 2017, 31(9): 50-56.
[14] 李苗苗, 陈平, 王辉, 李建超. 粉煤灰微珠填充环氧树脂复合涂层耐磨性能的研究*[J]. 《材料导报》期刊社, 2017, 31(4): 36-40.
[15] 张秀芝,刘明乐,杜笑寒,杨祥子,周宗辉. 纳米SiO2与粉煤灰协同改性水泥基材料性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 50-55.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed