Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10182-10186    https://doi.org/10.11896/cldb.19070157
  高分子与聚合物基复合材料 |
壳聚糖-SiO2仿生物矿化协同改性尾巨桉木材
陈世尧1, 袁光明1,2, 杨涛1, 夏名出1, 牟明明1
1 中南林业科技大学材料科学与工程学院,长沙 410004
2 木竹资源高效利用省部共建协同创新中心,长沙 410004
Synergistic Modification of Eucalyptus Urophylla Wood by Chitosan-SiO2 Biomimetic Mineralization
CHEN Shiyao1, YUAN Guangming1,2, YANG Tao1, XIA Mingchu1, MU Mingming1
1 College of Material Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
2 Collaborative Innovation Center for Effective Utilizing of Wood & Bamboo Resource, Changsha 410004, China
下载:  全 文 ( PDF ) ( 5379KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将具有仿生矿化功能的壳聚糖与SiO2层层自组装,对尾巨桉木材实现仿生物矿化协同改性。在桉木木材细胞壁接枝壳聚糖,与多羟基SiO2交替接枝实现桉木木材性能改良。对改性的桉木进行顺纹抗压强度、冲击韧性、耐磨性、硬度等力学性能检测和热重分析,并用SEM、FTIR和XRD表征其微观形貌和结构。结果表明:改性桉木的顺纹抗压强度、冲击韧性、耐磨性、端面硬度分别为85.91 MPa、82.5 kJ/m2、18.30 mg/100r、6 450 N,较空白组桉木分别提升54.8%、94.1%、24.8%、110%;热稳定性残炭量达到48.21%,相对桉木提高173%。壳聚糖与SiO2协同改性桉木,形成了有机-无机杂化结构,增强了木材性能。SEM显示木材内部形成了三维网络有机-无机杂化结构并覆盖纹孔及导管,部分SiO2粒子呈球状颗粒分布于木材导管壁、木纤维细胞壁之间;XRD测试表明SiO2粒子以非晶态进入木材,与空白组桉木相比,改性材的衍射峰强度和结晶度都略微减小;经分析壳聚糖与木材形成稳定的-CONH化合键后静电吸附SiO2粒子,并与之形成Si-O-C键。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈世尧
袁光明
杨涛
夏名出
牟明明
关键词:  仿生物矿化  壳聚糖  SiO2  杂化结构  桉木改性    
Abstract: The biomimetic mineralization of Eucalyptus urophylla wood was modified by self-assembly of chitosan and SiO2. Chitosan was grafted onto the cell wall of Eucalyptus wood, and polyhydroxyl SiO2 was grafted alternately to improve the wood properties of Eucalyptus. The mechanical properties such as compression strength parallel to grain, impact toughness, abrasion resistance, hardness and thermal stability of modified Eucalyptus were tested. SEM, FTIR and XRD were used to study the microstructure and structure of materials. The results showed that compression strength parallel to grain, impact toughness, wear resistance and end face hardness properties were 85.91 MPa, 82.5 kJ/m2, 18.30 mg/100r, 6 450 N, and increased by 54.8%,94.1%,24.8% and 110% respectively. Thermal stability carbon residue reached 48.21%, which increased 173% compared with blank Eucalyptus. Chitosan and SiO2 co-modified Eucalyptus can form organic-inorganic hybrid structure to enhance the properties of wood. SEM showed that there was a three-dimensional network of organic and inorganic hybrid structures covering the pores and ducts inside the wood, and some SiO2 particles were distributed between the wood fiber cell walls in the wood duct wall as spherical particles. XRD showed that SiO2 particles enter into wood in amorphous state, compared with blank Eucalyptus, the diffraction peak strength and crystallinity of the modified material decreased slightly. After the formation of stable -CONH bond between chitosan and wood, Si-O-C bond was formed by electrostatic adsorption of SiO2 particles.
Key words:  biomimetic mineralization    chitosan    SiO2    hybrid structure    Eucalyptus wood modification
                    发布日期:  2020-04-26
ZTFLH:  TB332  
基金资助: 国家自然科学基金(31770606); 湖南省科技重大专项(2017NK1010)
通讯作者:  袁光明,中南林业科技大学材料科学与工程学院,教授,博导,副院长。2008年于中南林业科技大学材料科学与工程学院获木材科学与技术学科工学博士学位,主要从事木材功能性改良、木竹基复合材料、木竹纤维-无机纳米复合材料研究。ygm1237@163.com   
作者简介:  陈世尧,2017年6月毕业于西北农林科技大学,获工学学士学位,于2017年9月至中南林业科技大学攻读硕士学位,主要从事木材功能性改良研究。
引用本文:    
陈世尧, 袁光明, 杨涛, 夏名出, 牟明明. 壳聚糖-SiO2仿生物矿化协同改性尾巨桉木材[J]. 材料导报, 2020, 34(10): 10182-10186.
CHEN Shiyao, YUAN Guangming, YANG Tao, XIA Mingchu, MU Mingming. Synergistic Modification of Eucalyptus Urophylla Wood by Chitosan-SiO2 Biomimetic Mineralization. Materials Reports, 2020, 34(10): 10182-10186.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070157  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10182
1 Merk V M, Chanana M, Keplinger T, et al. Green Chemistry,2015,17(3),1423.
2 Lu Y, Feng M, Zhan H B. Cellulose, 2014,21(6),4394.
3 Meyers M A, McKittrick J, Chen P Y. Science, 2013, 339,773.
4 Jackson A, Vincent J, Turner R. Proceedings of the Royal Society of London B: Biological Science, 1998, 234,415.
5 Ma Y F, Qiao L, Feng Q L.Journal of Inorganic Materials, 2013, 28(1),109(in Chinese).
马玉菲, 乔 莉, 冯庆玲. 无机材料学报, 2013, 28(1),109.
6 Mao L B, Gao H L, Yao H B, et al. Science, 2016,354,107.
7 Bonderer L J, Studart A R, Gauckler L J. Science, 2008, 319,1069.
8 Wang L J, Guo Z M, Li T J, et al.Progress in Chemistry, 1999, 19(2),119(in Chinese).
王荔军,郭中满,李铁津,等. 化学进展, 1999, 19(2),119.
9 Liang N N, Xia L.Polymer Bulletin, 2014(4),1(in Chinese).
梁宁宁, 夏琳. 高分子通报,2014(4),1.
10 Zhang Y X, Liao J G, Li Y Q, et al. Materials Reports A:Review Papers, 2017, 31(9),53(in Chinese).
张永祥, 廖建国, 李艳群, 等. 材料导报:综述篇, 2018,31(9),53.
11 Kong L, Gao Y, Lu G, et al.European Polymer Journal, 2006, 42,3171.
12 Beppu M M,Santana C C. Materials Science and Engineering: C, 2003, 23(5),651.
13 Sun Z Z, Cai R R, Pu X M, et al. Journal of Functional Materials, 2011, 42(1),128(in Chinese).
孙珍珍, 蔡汝汝, 蒲曦鸣, 等. 功能材料, 2011, 42(1),128.
14 Lu Z H, Ma Y D, Zhao D M, et al. Materials Review A:Research Papers,2013,27(12),88(in Chinese).
卢志华, 马育栋, 赵冬梅, 等. 材料导报:研究篇,2013,27(12),88.
15 Shabir M M, Hübert T, Sabel M, et al. Journal of Materials Science, 2012, 47(19),6849.
16 Shabir M M, Hübert T, Schartel B, et al.Journal of Sol-Gel Science and Technology, 2012, 64(2),452.
17 Chen H Y, Lang Q, Bi Z, et al. Holzforschung,2013,68(1),45.
18 Dong L D, Wei C P, Li Z T,et al. Chinese Optics, 2018,11(5),773(in Chinese).
董丽丹,魏长平,李中田,等.中国光学,2018,11(5),773.
[1] 刘家文, 王冲, 熊光启. 可再分散沥青粉与纳米SiO2复合制备刚性自防水混凝土的研究[J]. 材料导报, 2020, 34(8): 8090-8095.
[2] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[3] 张凤云, 姜勇刚, 冯军宗, 李良军, 冯坚. 快速制备纳米SiO2粉末基隔热复合材料的研究进展及展望[J]. 材料导报, 2020, 34(11): 11043-11048.
[4] 马立云, 汤永康, 鲍田, 金良茂, 甘治平, 李刚. 宽谱增透双层TiO2-SiO2/SiO2薄膜的制备与性能[J]. 材料导报, 2019, 33(Z2): 161-164.
[5] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[6] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[7] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[8] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[9] 李华鑫, 陈俊勇, 乐弦, 向军辉. Al2O3-SiO2复合气凝胶的制备与表征[J]. 材料导报, 2019, 33(18): 3170-3174.
[10] 董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
[11] 谢红梅, 蒋斌, 彭程, 潘复生. SiO2/MoS2复合纳米基润滑油在镁合金冷轧中的摩擦学性能及润滑机理[J]. 《材料导报》期刊社, 2018, 32(8): 1276-1282.
[12] 罗燚, 姜勇刚, 冯军宗, 关蕴奇, 冯坚. 常压干燥制备SiO2气凝胶复合材料研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 780-787.
[13] 舒心, 刘朝辉, 丁逸栋, 杨宏波, 罗平. 纳米SiO2气凝胶的制备及保温隔热性应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 788-795.
[14] 冯东, 姜岩, 茹红强, 罗旭东, 张国栋, 曹一伟. 纳米-Al2O3/SiO2加入量对MgO-Al2O3-SiO2复相陶瓷烧结机理的影响[J]. 材料导报, 2018, 32(24): 4248-4252.
[15] 厉佩贤, 袁鸽成, 陆正华, 李倩, 乐迎锋, 吴其光. 热处理对Bi2O3-B2O3-SiO2凝胶玻璃粉体结构与性能的影响[J]. 材料导报, 2018, 32(22): 4006-4010.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed