Please wait a minute...
材料导报  2018, Vol. 32 Issue (22): 4006-4010    https://doi.org/10.11896/j.issn.1005-023X.2018.22.029
  中国材料大会——生态环境材料 |
热处理对Bi2O3-B2O3-SiO2凝胶玻璃粉体结构与性能的影响
厉佩贤1, 袁鸽成1, 陆正华1, 李倩1, 乐迎锋1, 吴其光2
1 广东工业大学材料与能源学院,广州 510006;
2 广东工业大学分析测试中心,广州 510006
Effect of Heat Treatment on Structure and Properties of Sol-Gel Bi2O3-B2O3-SiO2 Glassy Powder
LI Peixian1, YUAN Gecheng1, LU Zhenghua1, LI Qian1,LE Yingfeng1, WU Qiguang2
1 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 ;
2 Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006
下载:  全 文 ( PDF ) ( 3257KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法制备了一种Bi2O3-B2O3-SiO2系玻璃粉体,在200 ℃、400 ℃、600 ℃和800 ℃温度下分别对凝胶玻璃粉体进行热处理,借助SEM、TEM、XRD、FT-IR、Raman、XPS、DSC、热膨胀仪及“纽扣”烧结实验分别测定了经不同温度热处理后玻璃粉体的结构与性能,分析了其结构变化对玻璃粉体转变温度Tg和烧结特性的影响。结果显示,在实验温度范围内,随热处理温度升高,Bi3+逐渐进入玻璃网络中,[BiO6]八面体和[BiO3]三角体、[BO4]四面体和[BO3]三角体分别与[SiO4]四面体以顶角相连的方式构建玻璃网络结构。O1s和Bi4f的电子结合能逐渐增大,B1s的电子结合能减小,玻璃网络结构稳定性增强,导致玻璃转变温度Tg及玻璃膨胀软化点温度Td升高、 润湿性降低且热膨胀系数略有降低。经600 ℃热处理后,玻璃粉体具有较优的烧结性能,TgTd分别约为485 ℃及542 ℃,热膨胀系数α约为7.067×10-6/℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
厉佩贤
袁鸽成
陆正华
李倩
乐迎锋
吴其光
关键词:  溶胶-凝胶  热处理  Bi2O3-B2O3-SiO2玻璃  粉体  结构  性能    
Abstract: The glassy powder of Bi2O3-B2O3-SiO2 was prepared by sol-gel method. In order to study the effect of heat-treated temperature on structure and properties of the powder, it was heated at temperature of 200 ℃,400 ℃,600 ℃,800 ℃,respectively. The structure and properties of the glassy powder under various heat-treated temperature were tested by means of SEM, TEM, XRD, FT-IR, Raman, XPS, DSC, thermal dilatometer and ‘button-sintering’, respectively. The effect of the powder structure change on its transition temperature Tg and sintering properties was analyzed. The results show that Bi3+get into the network structure with the rising of heat-treated temperature,[BiO6] octahedral and [BiO3] triangle, [BO4] tetrahedron and [BO3] triangle connect with [SiO4] tetrahedron separately in the way of vertex connecting to build the network structures. The O1s and Bi4f binding energies increase gradually while the B1s binding energies decrease which strengthen the stability of glass structure. All of these structure changes cause the increase of transition temperature Tg and softening temperature Td, the decrease of wettability and slight increase of thermal expansion coefficient of the glass powder. The glass powder treated at 600 ℃has better sintering characteristics, the Tg, Td is approximately 485 ℃and 542 ℃,respectively, and the thermal expansion coefficient is close to 7.067×10-6/℃.
Key words:  sol-gel    heat-treating    Bi2O3-B2O3-SiO2 glass    powder    structure    properties
               出版日期:  2018-11-25      发布日期:  2018-12-21
ZTFLH:  TQ174  
基金资助: 广东省自然科学基金(2006B14701003);广州市科技计划项目(2015110010034)
通讯作者:  袁鸽成:通信作者,男,1963年生,博士,教授,主要从事超细金属及玻璃陶瓷粉体材料及先进轻金属材料的研究 E-mail:gchyuan@gdut.edu.cn   
作者简介:  厉佩贤:女,1994年生,硕士研究生,主要从事超细粉体材料制备及结构与性能研究 E-mail:lipeixianxx@163.com
引用本文:    
厉佩贤, 袁鸽成, 陆正华, 李倩, 乐迎锋, 吴其光. 热处理对Bi2O3-B2O3-SiO2凝胶玻璃粉体结构与性能的影响[J]. 材料导报, 2018, 32(22): 4006-4010.
LI Peixian, YUAN Gecheng, LU Zhenghua, LI Qian, LE Yingfeng, WU Qiguang. Effect of Heat Treatment on Structure and Properties of Sol-Gel Bi2O3-B2O3-SiO2 Glassy Powder. Materials Reports, 2018, 32(22): 4006-4010.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.22.029  或          http://www.mater-rep.com/CN/Y2018/V32/I22/4006
1 Yu Xiaojun, Zhu Lihui, Huang Qingwei, et al. Effects of Bi2O3 on structure and properties of Al2O3-ZnO-Bi2O3-B2O3 low-melting glasses[J]. Electronic Components and Materials,2013,32(9):12(in Chinese).
于小军,朱丽慧,黄清伟,等. Bi2O3对Al2O3-ZnO-Bi2O3-B2O3低熔玻璃结构和性能的影响[J].电子元件与材料,2013,32(9):12.
2 He Feng, Deng Dawei, Wang Jun. Effect of Bi2O3 contents on sintering property of Bi2O3-ZnO-B2O3 system low-melting electronic sea-ling glass[J]. Journal of Wuhan University of Technology,2009,31(22):1(in Chinese).
何峰,邓大伟,王俊.Bi2O3对铋锌硼低熔封接玻璃烧结性能影响[J].武汉理工大学学报,2009,31(22):1.
3 Zhou Hongping, Zeng Renjie. Effects of CuO on structure and heat treatment of Bi2O3-B2O3-ZnO glasses[J]. Journal of Ceramics,2010,31(4):568(in Chinese).
周洪萍,曾人杰.CuO对ZnO-Bi2O3-B2O3系玻璃结构及热处理结果影响[J].陶瓷学报,2010,31(4):568.
4 Cheng Junwen,Chen Feifei,Dai Shixun, et al. Vitreous network formation and optical characteristics of glasses within Bi2O3-B2O3 binary system[J]. Journal of the Chinese Ceramic Society,2013,41(4):475(in Chinese).
成俊雯,陈飞飞,戴世勋,等. Bi2O3-B2O3二元系统玻璃的网络结构形成与光学性能研究[J].硅酸盐学报,2013,41(4):475.
5 Huang Yourong, Li Yaohui, Wang Jinzhen, et al. Network structures and characteristics of Bi2O3-ZnO-B2O3 ternary system glasses[J]. Journal of the Chinese Ceramic Society,2015,43(7):998(in Chinese).
黄幼榕,李要辉,王晋珍,等.Bi2O3-ZnO-B2O3三元系统玻璃结构与性能[J].硅酸盐学报,2015,43(7):998.
6 Shruti S, Salinas A J, Malavasi G, et al. Structural and in vitro study of cerium, gallium and zinc containing sol-gel bioactive glasses[J]. Journal of Materials Chemistry,2012,22(27):13698.
7 Chen J, Que W, Xing Y, et al. Molecular level-based bioactive glass-poly (caprolactone) hybrids monoliths with porous structure for bone tissue repair[J]. Ceramics International,2015,41(2):3330.
8 Gao Yuan, Hou Yonggai, Li Wenfeng, et al. Development of ZnO-B2O3-SiO2 system glass prepared by sol-gel method[J]. Guangzhou Chemical Industry,2016,44(17):14(in Chinese).
高元,侯永改,李文凤,等.溶胶-凝胶法制备ZnO-B2O3-SiO2系玻璃料的研究进展[J].广州化工,2016,44(17):14.
9 Ming Wang. Investigation of the structure evolution process in sol-gel derived CaO-B2O3-SiO2 glass ceramics[J].Journal of Non-Crystalline Solids,2011,357:1160.
10 Zhu X, Mai C, Li M. Effects of B2O3 content variation on the Bi ions in Bi2O3-B2O3-SiO2 glass structure[J]. Journal of Non-Crystalline Solids,2014,388:55.
11 Liu Junfang, Su Liangbi, Xu Jun. Near-infrared luminescence pro-perties of Bi2O3-SiO2 glasses and glass ceramics[J]. Journal of Inorganic Materials,2014(8):859(in Chinese).
刘军芳,苏良碧,徐军.Bi2O3-SiO2玻璃及玻璃陶瓷近红外发光性能的研究[J].无机材料学报.2014(8):859.
12 Fan H. Infrared, Raman and XPS spectroscopic studies of Bi2O3-B2O3-GeO2 glasses[J]. Solid State Sciences,2010,12(4):541.
13 Deng D W. Study on structure and melt properties of Bi2O3-B2O3-ZnO low-melting lead-free sealing glass[D]. Wuhan:Wuhan University of Technology,2011(in Chinese).
邓大伟.Bi2O3-B2O3-ZnO系低熔点无铅封接玻璃结构与熔点性质研究[D].武汉:武汉理工大学,2011.
14 Ardelean I, Cora S. FTIR and Raman investigations of MnO-B2O3-Bi2O3[J]. Journal of Optoelectronics and Advanced Materials,2010,12(2):239.
15 Gao G J,Wang G N,Hu L.Effect of SiO2 on thermal stability, optical properties and structural characteristic of Bi2O3-B2O3 binary glasses[J].Acta Photonica Sinica,2008(s1):50(in Chinese).
高国军,汪国年,胡丽.SiO2对Bi2O3-B2O3玻璃体系光学、热学及结构的影响[J].光子学报,2008(s1):50.
16 Nesbitt H W, Bancroft G M, et al. Bridging, non-brifging free (O2-) oxygen in Na2O-SiO2 glasses[J].Journal of Non-Crystalline Solids,2011,1(357):173.
17 Chang M. Study on structure and melt properties of Bi2O3-ZnO-B2O3 lead-free low-temperature sealing glass[D]. Beijing:China Construction Materials Science Research Institute,2014(in Chinese).
常明.Bi2O3-ZnO-B2O3低温无铅封接玻璃结构及性能研究[D].北京:中国建筑材料科学研究总院,2014.
18 Chen Danping, Jiang Xiongwei, Zhu Congshan. Study on the structure of Bi2O3-Li2O glass[J]. Journal of Inorganic Materials,2002,17(2):202(in Chinese).
陈丹平,姜雄伟,朱从善.Bi2O3-Li2O玻璃的结构研究[J].无机材料学报.2002,17(2):202.
19 Le Yingfeng,Yuan Gecheng,Li Qian, et al. Thermal properties of Bi2O3-SiO2-B2O3-Zn O-Al2O3 glass powders prepared by sol-gel method[J]. China Powder Science and Technology,2017,23(1):85(in Chinese).
乐迎锋,袁鸽成,李倩,等.溶胶凝胶法制备Bi2O3-SiO2-B2O3-ZnO-Al2O3系玻璃粉体的热性能[J].中国粉体技术,2017,23(1):85.
20 Ding Kanjunjie, Chen Nan. Preparation, structures, thermal pro-perties and sintering behaviors of B2O3-SiO2-ZnO-BaO-Al2O3 glass[J]. Journal of Wuhan University of Technology(Materials Science Edition),2016,31(6):1323.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[3] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[4] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[5] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[6] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[7] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[8] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[9] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[10] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[11] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[12] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[13] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[14] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[15] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed