Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10177-10181    https://doi.org/10.11896/cldb.18060095
  高分子与聚合物基复合材料 |
仿血管聚氨酯基复合材料的激光烧结工艺研究
庄煜1, 郭艳玲1, 李健1, 姜凯译2, 于跃强1, 张慧1
1 东北林业大学机电工程学院,哈尔滨 150040
2 东北林业大学工程技术学院,哈尔滨 150040
Study on Selective Laser Sintering Processing of Blood Vessel-like Polyurethane Based Composite
ZHUANG Yu1, GUO Yanling1, LI Jian1, JIANG Kaiyi2, YU Yueqiang1, ZHANG Hui1
1 College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
2 School of Engineering and Technology, Northeast Forestry University, Harbin 150040, China
下载:  全 文 ( PDF ) ( 5028KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光选区烧结(SLS)技术在生物医学领域的应用日渐广泛,但是由于材料的限制,大部分SLS打印的产品都是合成塑料、陶瓷、合金等刚性零件,研究能用于激光选区烧结技术的柔性材料成为当前的迫切需求。本工作采用聚氨酯(TPU)粉末为主料,研究并制备了一种可用于激光选区烧结技术的复合材料,其烧结制件具有较高的强度及成形精度,可用于制作仿血管等柔性医疗模型。首先通过正交试验法对TPU/PS复合粉末进行激光选区烧结实验,并对制件进行测试,获得加工工艺参数对制件强度、成形精度及烧结密度的影响规律。其次对不同配比的TPU/PS复合粉末进行激光选区烧结实验,得到拉伸试件和弯曲试件,通过对制件的尺寸测量、力学强度测试及通过扫描电镜对复合粉末和拉伸试样断口进行显微组织观察,得到了不同组分配比对烧结制件显微组织及拉伸强度、弯曲强度的影响,确定了仿血管柔性材料的理想配比。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庄煜
郭艳玲
李健
姜凯译
于跃强
张慧
关键词:  仿血管柔性材料  激光选区烧结技术  聚氨酯基复合材料  正交试验  工艺参数优化  力学强度    
Abstract: Selective laser sintering technology has been widely used in biomedical field, but due to the limitations of the feedstock, most of SLS products are made of synthetic plastics, ceramics, alloys, and so on. And developing flexible material for laser selective sintering is a pressing need for the present. In this work, polyurethane (TPU) powder was used as the main material, and a composite that can be used for selective laser sintering was studied and prepared. The sintered parts have high strength and forming precision, which can be used to make flexible medical models such as blood vessels. First, the laser sintering experiment of TPU/PS (Polystyrene) powder was performed through the orthogonal experiment method. After testing, it obtained the effect of the process parameters on the strength, precision and sintering density. Secondly, the TPU/PS composites of different mass fractions were sintered to obtain tensile and bending specimens. Through the dimension measurement, the mechanical testing and the microstructure observation by scanning electron microscope, the effects of different component proportion on the microstructure, tensile strength and bending strength of the sintered pieces were obtained, and the optimized component ratio of the flexible material was determined.
Key words:  blood vessel-like flexible material    selective laser sintering    polyurethane matrix composites    orthogonal experimental method    process parameter optimization    mechanical strength
                    发布日期:  2020-04-26
ZTFLH:  TQ334.1  
基金资助: :中央高校基本科研项目(2572019AB20);国家重点研发计划项目(2017YFD0601004);东北林业大学“双一流”项目(41113253);省基金重点项目(ZD2017009)
通讯作者:  郭艳玲,东北林业大学教授,博士研究生导师。1984年7月在大连理工大学获工学学士学位,2001年在哈尔滨工业大学获博士学位,2001—2003年在哈尔滨工业大学进行博士后研究工作,2008—2009年在美国密歇根大学吴贤明制造技术中心进行访问、合作研究。在国内外学术期刊上发表论文150余篇,申请国家发明专利8项,其中授权5项。长期从事生物质激光3D打印材料及设备研究、数控技术及设备、林果自动采摘技术及设备等相关领域研究。负责完成科研20多项,包括国家自然科学基金、“948”引进项目、博士点基金、省市项目、企业合作项目等。已培养硕士60余名,博士17名,合作博士后7名。guo.yl@hotmail.com   
作者简介:  庄煜,2016年6月毕业于东北林业大学机械设计制造及其自动化专业,获得工学学士学位。现为东北林业大学机电工程学院博士研究生。目前主要研究选区激光烧结材料、设备和工艺。
引用本文:    
庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
ZHUANG Yu, GUO Yanling, LI Jian, JIANG Kaiyi, YU Yueqiang, ZHANG Hui. Study on Selective Laser Sintering Processing of Blood Vessel-like Polyurethane Based Composite. Materials Reports, 2020, 34(10): 10177-10181.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060095  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10177
1 Goodridge R D, Tuck C J, Hague R J M. Progress in Materials Science, 2012, 57(2), 229.
2 Zhang J, Xu Z F, Zheng H Z, et al. Journal of Materials Engineering, 2004(5), 36(in Chinese).
张坚, 徐志锋, 郑海忠,等. 材料工程, 2004(5),36.
3 Xu Zhifeng, Liang Pei, Yang Wei, et al. China Foundry, 2014,11(3),151.
4 Qi D. Research on the preparation of selective laser sintering polymer materials and its forming process. Master's Thesis, Qingdao University of Science & Technology, China, 2016(in Chinese).
齐迪. 用于选择性激光烧结高分子材料的制备与成型研究.硕士学位论文,青岛科技大学,2016.
5 Wang F, Li K, Cao C L, et al. Foundry Technology, 2017,38(6),1258(in Chinese).
汪飞, 李克, 曹传亮, 等. 铸造技术, 2017,38(6),1258.
6 Wang L, Dai K R. Journal of Medical Biomechanics, 2014,29(3),193(in Chinese).
王燎, 戴尅戎. 医用生物力学, 2014,29(3),193.
7 Gao G H, Ren H, Wang H, et al. Journal of Beijing University of Technology, 2018, 44(4), 1(in Chinese).
高国华, 任晗, 王皓,等. 北京工业大学学报,2018, 44(4), 1.
8 Guo Yanling, Jiang Kaiyi, Bourell D L. Polymer Testing, 2014, 37(8), 210.
9 Eberhart A, Zhang Z, Guidoin R, et al. Journal of Biomechanics Mate-rials Research, 1999, 489(4), 546.
10 Marois Y, Akoum A, King M, et al. Journal of Investigative Surgery,1993,6(3), 273.
11 Zhang Z, Wang Z, Liu S, et al. Biomaterials, 2004, 25(1),177.
12 Guo Y L, Jiang K Y, Yu Z X, et al. Journal of Shanghai Jiaotong University, 2011, 45(9),1327(in Chinese).
郭艳玲, 姜凯译, 于志祥, 等. 上海交通大学学报, 2011,45(9),1327.
13 He M, Wurikaixi Aiyiti. Foundry Technology, 2015,36(7),1756(in Chinese).
何敏, 乌日开西·艾依提. 铸造技术, 2015,36(7),1756.
14 Zhang H. Study on mechanical and machinable properties of wood-plastic parts fabricated by laser sintering. Master's Thesis, Northeast Fo-restry University, China, 2016(in Chinese).
张慧. 激光烧结的木塑制件力学性能及可加工性研究. 硕士学位论文, 东北林业大学, 2016.
15 Yu Yueqiang, Guo Yanling, Jiang Ting, et al. Bioresources, 2018, 13(2), 3017.
[1] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[2] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[3] 李昌, 高敬翔, 张大成, 于志斌, 韩兴. 基于PFM-FEM的多变体马氏体转变过程模拟及模型参数灵敏度分析[J]. 材料导报, 2019, 33(20): 3477-3488.
[4] 董越, 杨志强, 高谦. 正交试验协同BP神经网络模型预测充填体强度[J]. 材料导报, 2018, 32(6): 1032-1036.
[5] 闫存富, 李淑娟. 陶瓷材料低温挤压自由成形工艺液相迁移研究[J]. 《材料导报》期刊社, 2018, 32(4): 636-640.
[6] 李茂红, 温静, 李依芮, 屈树新, 曾晓辉, 王平. 控制聚合与沉淀协同作用改善高铁轨道板涂料用水玻璃性能[J]. 材料导报, 2018, 32(24): 4264-4268.
[7] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述*[J]. CLDB, 2017, 31(23): 17-23.
[8] 肖俊华, 左迎峰, 吴义强, 刘文杰, 吴志平, 孟陶陶. 硅丙乳液对镁系无机胶黏剂性能和微结构的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 49-54.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed