Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 780-787    https://doi.org/10.11896/j.issn.1005-023X.2018.05.014
  材料综述 |
常压干燥制备SiO2气凝胶复合材料研究进展
罗燚, 姜勇刚, 冯军宗, 关蕴奇, 冯坚
国防科技大学新型陶瓷纤维及其复合材料重点实验室,长沙 410073
Progress on the Preparation of SiO2 Aerogel Composites by Ambient Pressure Drying Technique
LUO Yi, JIANG Yonggang, FENG Junzong, GUAN Yunqi, FENG Jian
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of
Defense Technology, Changsha 410073
下载:  全 文 ( PDF ) ( 2134KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 SiO2气凝胶复合材料具有低密度、低热导、高强度等优异性能,已在航空航天、石油化工、建筑保温等领域获得较好应用。然而现有成熟的超临界干燥制备SiO2气凝胶复合材料工艺需要维持高温、高压条件,能耗高、危险性大且设备复杂,常压干燥制备工艺由于所需条件温和、设备简单,有望实现连续性规模化生产。本文结合国内外关于常压干燥制备SiO2气凝胶复合材料的研究进展,按照颗粒、纤维等增强相的不同,对常压干燥制备SiO2气凝胶复合材料进行综述并对其未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗燚
姜勇刚
冯军宗
关蕴奇
冯坚
关键词:  SiO2  气凝胶  复合材料  常压干燥    
Abstract: Owing to low density, low thermal conductivity and high strength,SiO2 aerogel composite has been widely used in aerospace, chemical industry and building insulation. Silica aerogel composites conventionally make by supercritical drying process which is complicated, hazardous and uneconomical and the harsh condition impose restriction on the commercial exploitations of silica aerogel composites. Ambient pressure drying technology which can synthesize silica aerogel composites under mild condition and simple equipment is a promising method to promote the production of silica aerogel composites on a large scale.In the paper, according to different reinforce phases of particle and fibers, reviewed SiO2 aerogel composites via ambient pressure drying and the future development direction of SiO2 aerogel composites.
Key words:  SiO2    aerogel    composites    ambient pressure drying
出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TQ174.75  
基金资助: 国家自然科学基金(51172279;51302317);湖南省高校科技创新团队支持计划;国防科学技术大学陶瓷纤维与复合材料技术创新群体资助
通讯作者:  姜勇刚:通信作者,男,1979年生,博士研究生,副研究员,主要从事纳米气凝胶隔热材料研究 E-mail:jygemail@163.com   
作者简介:  罗燚:男,1994年生,硕士研究生,主要从事纳米气凝胶隔热材料研究 E-mail:nudtluoyi@163.com
引用本文:    
罗燚, 姜勇刚, 冯军宗, 关蕴奇, 冯坚. 常压干燥制备SiO2气凝胶复合材料研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 780-787.
LUO Yi, JIANG Yonggang, FENG Junzong, GUAN Yunqi, FENG Jian. Progress on the Preparation of SiO2 Aerogel Composites by Ambient Pressure Drying Technique. Materials Reports, 2018, 32(5): 780-787.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.014  或          https://www.mater-rep.com/CN/Y2018/V32/I5/780
1 Liu Yang, Zhang Yi, Li Dongxu. Preparation of hydrophobic silica aerogels by ambitient pressure drying method[J].Journal of Functional Materials,2015,46(5):5132(in Chinese).
刘洋,张毅,李东旭.常压干燥制备疏水性SiO2气凝胶[J].功能材料,2015,46(5):5132.
2 Han Yafen, Xia Xinlin, Liu Haidong,et al. Characteristic of heat conduction in nano-insulation material [J].Journal of Functional Materials,2014,45(3):17(in Chinese).
韩亚芬,夏新林,刘海东,等.纳米隔热材料导热特性研究[J].功能材料,2014,45(3):17.
3 Koebel M M, Rigacci A, Achard P. Aerogels for superinsulation: A synoptic view[M]∥Aerogels Handbook.New York:Springer,2011:607.
4 Kistler S S. Coherent expanded aerogels and jellies[J].Nature,1931,127(3211):741.
5 Fricke J, Emmerling A. Aerogels—preparation, properties, applications[J].Chemistry,Spectroscopy and Applications of Sol-Gel Glasses,1992,77(4):37.
6 Nicola Hüsing, Ulrich Schubert. Aerogels—Airy materials: Chemistry, structure, and properties[J].Angewandte Chemie International Edition,1998,37(1-2):22.
7 Wu Xiaodong, Cui Sheng, Wang Ling, et al. Advance in research of high temperature resistant aerogel used as insulation material[J].Materials Review A:Review Papers,2015,29(5):102(in Chinese).
吴晓栋,崔升,王岭,等.耐高温气凝胶隔热材料的研究进展[J].材料导报:综述篇,2015,29(5):102.
8 Feng Jian, Gao Qingfu, Feng Junzhong, et al. Preparation and pro-perties of fiber reinforced SiO2 aerogel insulation composites[J].Journal of National University of Defense Technology,2010,32(1):40(in Chinese).
冯坚,高庆福,冯军宗,等.纤维增强SiO2气凝胶隔热复合材料的制备及其性能[J].国防科技大学学报,2010,32(1):40.
9 Kuhn J, Gleissner T, Arduini-Schuster M C, et al. Integration of mineral powders into SiO2 aerogels[J].Journal of Non-Crystalline Solids,1995,186(2):291.
10 Wang J. Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers[J].Journal of Non-Crystalline Solids,1995,186(2):296.
11 Lee D, Stevens P C, Zeng S Q, et al. Thermal characterization of carbon-opacified silica aerogels[J].Journal of Non-Crystalline Solids,1995,186(2):285.
12 Zhao Junjie, Duan Yuanyuan, Wang Xiaodong, et al. Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation[J].International Journal of Thermal Sciences,2013,70(8):54.
13 Zhang Hexin, He Xiaodong, He Fei. Microstructure and physicochemical properties of ambient-dried SiO2, aerogels with K2Ti6O13, whisker additive[J].Journal of Alloys and Compounds,2009,472(1):194.
14 Li X K, Liu L, Zhang Y X, et al. Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels[J].Carbon,2001,39(2):159.
15 Fomitchev D V, Trifu R, Gould G. Fiber reinforced silica aerogel composites: Thermal insulation for high-temperature applications[C]∥Biennial Conference on Engineering,Construction,and Operations in Challenging Environments.Manchester,2004:968.
16 Gibson P W, Lee C, Ko F, et al. Application of nanofiber technology to nonwoven thermal insulation[J].Journal of Engineered Fibers and Fabrics,2007,2(2):32.
17 Gao Qingfu. Mechanical properties of ceramic fiber-reinforced silica aerogel insulation composites[J].Journal of the Chinese Ceramic Society,2009,37(1):1.
18 Yuan Bo, Ding Shuqiang, Wang Dongdong, et al. Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming[J].Materials Letters,2012,75(1):204.
19 Li Xiaolei, Wang Qingpu, Li Hailong, et al. Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel compo-site[J].Journal of Sol-Gel Science and Technology,2013,67(3):646.
20 Mi Chunhu, Jiang Yonggang, Shi Duoqi, et al. Mechanical property test of ceramic fiber reinforced silica aerogel composites[J].Acta Materiae Compositae Sinica,2014,31(3):635.
21 Jabbari M, Dan kesson, Skrifvars M, et al. Novel lightweight and highly thermally insulative silica aerogel-doped poly(vinyl chloride)-coated fabric composite[J].Journal of Reinforced Plastics & Composites,2015,34(19):1.
22 Jones S M. Aerogel: Space exploration applications[J].Journal of Sol-Gel Science and Technology,2006,40(2-3):351.
23 Shaid A, Furgusson L W M. Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing[J]. Chemical & Materials Engineering, 2014, 2:37.
24 Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation: An overview[J].Journal of Sol-Gel Science and Technology,2012,63(3):315.
25 Bheekhun N, Talib A R A, Hassan M R. Aerogels in aerospace: An overview[J]. Advances in Materials Science and Engineering,2013,2013:18.
26 Qi Zhengkun, Huang Dongmei, He Song, et al. Thermal protective performance of aerogel embedded firefighter’s protective clothing[J].Journal of Engineered Fibers and Fabrics,2013,8(2):134.
27 冯坚,高度福,冯军宗,等.纤维增强SiO2气凝胶隔热复合材料的制备及其性能[C]∥中国无机盐工业协会会员代表大会暨无机硅化物分会2010年全国无机硅化物行业年会.上海,2010.
28 Huber L, Zhao S, Malfait W J, et al. Fast and minimal-solvent production of superinsulating silica aerogel granulate[J].Angewandte Chemie,2017,56(17):1.
29 Sinkó K. Influence of chemical conditions on the nanoporous structure of silicate aerogels[J].Materials,2010,3(1):704.
30 Gurav J L, Jung I K, Park H H, et al. Silica aerogel: Synthesis and applications[J].Journal of Nanomaterials,2010,2010(24):23.
31 王宝和,李群.气凝胶制备的干燥技术[J].干燥技术与设备,2013(4):18.
32 Antoine Bisson, Arnaud Rigacci, Didier Lecomte, et al. Drying of silica gels to obtain aerogels:Phenomenology and basic techniques[J].Drying Technology,2003,4(4):593.
33 He S, Huang D, Bi H, et al. Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass[J].Journal of Non-Crystalline Solids,2015,410:58.
34 Chen Xiaohong, Hu Zijun, Song Huaihe, et al. Progress of preparation of silica aerogel at ambient pressure drying and its application in thermal insulation[J].Aerospace Materials & Technology,2010,40(6):14(in Chinese).
陈晓红,胡子君,宋怀河,等.SiO2气凝胶常压干燥工艺与隔热应用进展[J].宇航材料工艺,2010,40(6):14.
35 Bhagat S D, Kim Y H, Moon M J, et al. A cost-effective and fast synthesis of nanoporous SiO2, aerogel powders using water-glass via ambient pressure drying route[J].Solid State Sciences,2007,9(7):628.
36 郝元恺.高性能复合材料学[M].北京:化学工业出版社教材出版中心,2004.
37 Jiang Yonggang, Feng Junzhong, Feng Jian. Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity[J].Journal of Sol-Gel Science and Technology,2017,83(1):64.
38 Qin Yanqing, Jiang Yonggang, Feng Jian, et al. Progress in research on the use of infrared opacifiers in silica aerogel[J].Materials Review A:Review Papers,2015,29(6):129(in Chinese).
秦艳青,姜勇刚,冯坚,等.红外遮光剂在二氧化硅气凝胶中的应用研究进展[J].材料导报:综述篇,2015,29(6):129.
39 Zhang Hexin, Qiao Yingjie, Zhang Xiaodong, et al. Structural and thermal study of highly porous nanocomposite SiO2-based aerogels[J].Journal of Non-Crystalline Solids,2010,356(18):879.
40 Yang Haixia, Ye Feng, Liu Qiang, et al. Microstructure and pro-perties of the Si3N4/silica aerogel composites fabricated by the sol-gel method via ambient pressure drying[J].Materials and Design,2015,85:438.
41 Wang J, Wei Y, He W, et al. A versatile ambient pressure drying approach to synthesize silica-based composite aerogels[J].RSC Advances,2014,4(93):51146.
42 Xiao H,Williamson F,Bhaduri G A,et al.Synthesis and characteri-sation of ambient pressure dried composites of silica aerogel matrix and embedded nickel nanoparticles[J].Journal of Supercritical Fluids,2015,106:140.
43 Kaya C, Kaya F, Mori H. Damage assessment of alumina fibre-reinforced mullite ceramic matrix composites subjected to cyclic fatigue at ambient and elevated temperatures[J].Journal of the European Ceramic Society,2002,22(4):447.
44 Yan C, Liu R, Zhang C, et al. Effects of SiC/HfC ratios on the ablation and mechanical properties of 3D Cf /HfC-SiC composites[J].Journal of the European Ceramic Society,2017,37(6):2343.
45 Tang Sufang, Hu Chenglong. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: A review[J].Journal of Materials Science & Technology,2017,33(2):117.
46 Zhang Zhihua, Shen Jun, Ni Xingyuan, et al. Hydrophobic silica aerogels strengthened with nonwoven fibers[J].Journal of Macromolecular Science Part A,2006,43(11):1663.
47 losarczyk A, Wojciech S, Piotr Z, et al. Synthesis and characterization of carbon fiber/silica aerogel nanocomposites[J].Journal of Non-Crystalline Solids,2015,416:1.
48 Martinez R G, Goiti E, Reichenauer G, et al. Thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale[J].Energy and Buildings,2016,128:111.
49 Wei T Y, Lu S Y, Chang Y C. Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities[J].Journal of Physical Chemistry B,2008,112(38):11881.
50 Li Zhi, Cheng Xuedong, He Song, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J].Composites Part A:Applied Science and Manufacturing,2016,84(3):316.
51 Moghaddas J, et al. Thermal conductivities of silica aerogel compo-site insulating material[J].Advanced Materials,2016,7(4):296.
52 Kim C Y, Lee J K, Kim B I. Synthesis and pore analysis of aerogel-glass fiber composites by ambient drying method[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,313(1):179.
53 Chandradass J, Kang S, Bae D S. Synthesis of silica aerogel blanket by ambient drying method using water glass based precursor and glass wool modified by alumina sol[J].Journal of Non-Crystalline Solids,2008,354(34):4119.
54 Yu Yixi, Wu Xiaoyun, San Haisheng. Preparation and characterization of hydrophobic SiO2-glass fibers aerogels via ambient pressure drying[J].Journal of Materials Engineering,2015,43(8):31(in Chinese).
余煜玺,吴晓云,伞海生.常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征[J].材料工程,2015,43(8):31.
55 Shi Xiaojing, Zhang Ruifang, He Song, et al. Synthesis and heat insulation performance of glass fiber reinforced SiO2 aerogel compo-sites[J].Journal of the Chinese Ceramic Society,2016,44(1):129(in Chinese).
石小靖,张瑞芳,何松,等.玻璃纤维增韧SiO2气凝胶复合材料的制备及隔热性能[J].硅酸盐学报,2016,44(1):129.
56 Zhang Mingchan, Zeng Renjie. Preparation of thermal insulation block by slip casting and drying at ambient pressure and room temperature[J].Journal of Materials Engineering,2011(9):33(in Chinese).
张明灿,曾人杰.注浆成型-常温常压干燥制备隔热块体材料[J].材料工程,2011(9):33.
57 Motahari S, Abolghasemi A. Silica aerogel-glass fiber composites as fire shield for steel frame structures[J].Journal of Materials in Civil Engineering,2015,27(10):04015008.
58 Wu Huijun, Liao Yundan, Ding Yunfei, et al. Engineering thermal and mechanical properties of multilayer aligned fiber-reinforced aerogel composites[J].Journal of Sol-Gel Science and Technology,2012,63(3):445.
59 Wang Baoming, Song Kai, Ma Hainan. Synthesis and characterization of carbon nanofibers doped silica aerogels[J].Journal of Harbin Engineering University,2013,34(5):604(in Chinese).
王宝民,宋凯,马海楠.纳米碳纤维掺杂气凝胶的合成及性能[J].哈尔滨工程大学学报,2013,34(5):604.
60 Liu Guangwu, Ni Xingyuan, Liu Yanggang. Synthesis and characterization of silica aerogel and its composite materials[C]∥International Conference on Nano/micro Engineered and Molecular Systems.IEEE,2015:156.
61 Shao Zaidong, He Xiaoyong, Niu Ziwei, et al. Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths[J].Materials Chemistry and Physics,2015,162:346.
62 Liu H, Chu P, Li H, et al. Novel three-dimensional halloysite nanotubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure[J].Journal of Sol-Gel Science and Technology,2016,80(3):1.
63 Laskowski J, Milow B, Ratke L. Aerogel-aerogel composites for normal temperature range thermal insulations[J].Journal of Non-Crystalline Solids,2016,441:42.
64 Shi Yachun, Li Tiehu, Wang Xiling, et al. Preparation and characterization of silica aerogel/mesophase pitch derived carbon foam[J].Journal of Functional Materials,2013,44(20):3049(in Chinese).
史亚春,李铁虎,王习林,等.SiO2气凝胶/中间相沥青基泡沫炭复合材料的制备与表征[J].功能材料,2013,44(20):3049.
65 Li Wei, Ye Weiping, Cheng Xudong, et al. Preparation and properties of composites fiber-reinforced hydrophobic silica aerogels[J].Materials Review B:Research Papers,2015,29(11):72(in Chinese).
李威,叶卫平,程旭东,等.复合纤维增强疏水SiO2气凝胶的制备及其性能[J].材料导报:研究篇,2015,29(11):72.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[5] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[6] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[7] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[8] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[9] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[10] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[11] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[12] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[13] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[14] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[15] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed