Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 1-4    https://doi.org/10.11896/j.issn.1005-023X.2017.04.001
  材料研究 |
三维结构磷酸铁锂纳米线阵列的制备及其电化学性能
陈晓萍1, 马俊2, 李宝华1, 康飞宇1
1 清华大学材料学院, 北京 100084;
2 深圳大学材料学院, 深圳 518060
Preparation and Electrochemical Performance of 3D Structured
LiFePO4 Nanowire Arrays
CHEN Xiaoping1, MA Jun2, LI Baohua1, KANG Feiyu1
1 College of Materials Science and Engineering, Tsinghua University, Beijing 100084;
2 College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060
下载:  全 文 ( PDF ) ( 1714KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用阳极氧化铝模板(AAO),通过溶胶-凝胶法制备出磷酸铁锂(LiFePO4)纳米线阵列。场发射扫描电镜(FESEM)和透射电镜(TEM)表征均说明制得的LiFePO4阵列是分散均匀且相互平行的。X射线衍射(XRD)和能谱图(EDS)表征均说明LiFePO4纳米线是纯相橄榄石型结构。电化学性能测试表明纳米线阵列具有较好的循环稳定性,1C电流密度下循环100次后容量几乎不衰减,容量保持率为99.1%,10C电流密度下循环350次后容量保持率为91.6%。纳米线阵列的倍率性能较同等条件下制备的纳米粉体有较大提升,0.1C、10C电流密度下容量可分别达156.4 mAh/g、106.9 mAh/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈晓萍
马俊
李宝华
康飞宇
关键词:  磷酸铁锂  三维结构纳米线阵列  阳极氧化铝模板  溶胶-凝胶法    
Abstract: The LiFePO4 nanowire arrays was successfully fabricated by a sol-gel method using anodic oxide aluminum (AAO) as the template. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images showed the synthesized LiFePO4 nanowire arrays were monodispersed and parallel to one another. The X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) investigations jointly demonstrated a pure olivine structure of the synthesized LiFePO4 nanowire arrays.The LiFePO4 nanowire arrays also showed excellent electrochemical performance as cathode materials of lithium ion battery.Compared with nanoparticles prepared by the same condition,the nanowire arrays exhibited desirable rate performance (156.4 mAh/g at 0.1C and 106.9 mAh/g at 10C) and excellent cycle stability (99.1% after 100 cycles at 1C and 91.6% after 350 cycles at 10C).
Key words:  lithium iron phosphate    three-dimensional structured nanowire array    anodic aluminum oxide template    sol-gel method
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TB321  
  O646  
通讯作者:  康飞宇:通讯作者,男,1962年生,博士,教授,主要从事新型能源材料、锂离子电池、超级电容器等方面的制备研究 E-mail:fykang@mail.tsinghua.edu.cn   
作者简介:  陈晓萍:女,1990年生,硕士研究生,主要从事锂离子电池磷酸铁锂正极材料的制备研究 E-mail:hilary_0323@163.com
引用本文:    
陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.001  或          http://www.mater-rep.com/CN/Y2017/V31/I4/1
1 Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science,2001,293(5533):1289.
2 Garnett E C, Cai W, Cha J J, et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nat Mater,2012,11(3):241.
3 Balasubramanian B, Das B, Skomski R, et al. Novel nanostructured rare-earth-free magnetic materials with high energy products[J]. Adv Mater,2013,25(42):6090.
4 Stella L, Zhang P, García-Vidal F J, et al. Performance of nonlocal optics when applied to plasmonic nanostructures[J]. J Phys Chem C,2013,117(17):8941.
5 Bianco A, Cheng H, Enoki T, et al. All in the graphene family-A recommended nomenclature for two-dimensional carbon materials[J]. Carbon,2013,65:1.
6 Lieb E, Mattis D. Mathematical physics in one dimension: exactly soluble models of interacting particles[M]. New York:Academic Press,2013.
7 Suryawanshi S, Warule S, Patil S, et al. Vapor-liquid-solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior[J]. ACS Appl Mater Interfaces,2014,6(3):2018.
8 Lee M, Hong W, Jeong H, et al. Graphene oxide assisted sponta-neous growth of V2O5 nanowires at room temperature[J]. Nanoscale,2014,6(19):11066.
9 Wang B, Ostrikov K, Laan T, et al. Carbon nanorods and graphene-like nanosheets by hot filament CVD: Growth mechanisms and electron field emission[J]. J Mater Chem C,2013,1(46):7703.
10 Jian J, Shi W, Li Z, et al. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3d nanotube arrays[J]. ACS Appl Mater Interfaces,2012,4(1):171.
11 Wang D, Zhang L, Lee W, et al. Novel three-dimensional nanoporous alumina as a template for hierarchical TiO2 nanotube arrays[J]. Small,2013,9(7):1025.
12 Ye T,Gao Y,Yin Y.Surface-enhanced Raman scattering effects of gold nanorods prepared by polycarbonate membranes[J].Acta Phys Sin,2013,62(12):127801(in Chinese).
叶通, 高云, 尹彦. 利用聚碳酸酯模板制备的金纳米棒的表面增强Raman散射效应研究[J]. 物理学报,2013,62(12):127801.
13 Favors Z, Wang W, Bay H, et al. Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries[J]. Sci Rep,2014,4:4605.
14 Liu J, Song K, van Aken P A, et al. Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries[J]. Nano Lett,2014,14(5):2597.
15 Reddy A, Shaijumon M, Gowda S, et al. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries[J]. Nano Lett,2009,9(3):1002.
16 Yao Y, Liu N, McDowell M, et al. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings[J]. Energy Environ Sci,2012,5(7):7927.
17 马俊. 纳米结构磷酸铁锂正极材料的制备及其掺杂和表面改性[D].北京:清华大学,2010.
18 Liu Y, Cao C, Li J. Enhanced electrochemical performance of carbon nanospheres LiFePO4 composite by PEG based sol-gel synthesis[J]. Electrochim Acta,2010,55(12):3921.
19 Hamid N A, Wennig S, Hardt S, et al. High-capacity cathodes for lithium-ion batteries from nanostructured LiFePO4 synthesized by highly-flexible and scalable flame spray pyrolysis[J]. J Power Sources,2012,216:76.
20 Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nat Mater,2002,1(2):123
21 Yang J, Wang J, Wang D, et al. 3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries[J]. J Power Sources,2012,208:340.
22 Liu X, Wang J, Zhang J, et al. Fabrication and characterization of LiFePO4 nanotubes by a sol-gel-AAO template process[J]. Chin J Chem Phys,2006,19(6):530.
23 Duan D H, Tian Y, Zhang Z L, et al. Preparation of LiFePO4 nanowires arrays by sol-gel template method[J]. J Synth Cryst,2012,41(1):53(in Chinese).
段东红, 田野, 张忠林, 等. 溶胶-凝胶模板法制备磷酸铁锂纳米线阵列[J]. 人工晶体学报,2012,41(1):53.
[1] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[2] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[3] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[4] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[5] 山世浩, 王庆国, 曲兆明, 成伟, 李昂. 二氧化钒薄膜材料相变临界场强调控方法研究[J]. 材料导报, 2018, 32(6): 870-873.
[6] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[7] 许连强,唐志雄,唐少龙,都有为. 新型溶胶-凝胶法制备CoPd合金纳米颗粒及其磁性能表征[J]. 《材料导报》期刊社, 2018, 32(10): 1587-1591.
[8] 郭思彤,吴会军,杨丽修,刘燕妮,杨建明. 制备参数对SiO2气凝胶结构与性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 38-44.
[9] 陈 雨,余 飞,刘禹彤,徐小楠,张秋平,袁 欢,徐 明. 不同合成过程对溶胶-凝胶法制备的ZnO/Ag纳米复合材料光催化性能的影响[J]. 《材料导报》期刊社, 2017, 31(24): 120-124.
[10] 文钰斌, 刘新红, 顾强, 陈晓雨, 贾全利, 杨林, 马腾. 不同碳源对纳米锌铝尖晶石合成及颗粒粒径的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 109-113.
[11] 高金凤, 李明慧, 徐键, 方刚. 溶胶-凝胶法制备铜锌锡硫薄膜及其太阳能电池的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 146-151.
[12] 赵曼,肖仁贵,廖霞,刘飞. 水热法以磷铁制备电池级磷酸铁的研究*[J]. 材料导报编辑部, 2017, 31(10): 25-31.
[13] 韩 贵, 陆金花, 王 敏, 李丹阳. 溶胶-凝胶法制备铜锌锡硫材料的研究进展[J]. 材料导报, 2017, 31(1): 10-17.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed