Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 219-222    
  无机非金属及其复合材料 |
MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能
赖榕永, 王温馨, 谢雯倩, 丁益民
上海大学理学院化学系,上海200444
Preparation and Properties of Composite Phase Change Energy Storage Material MA-PA-SA/Modified Fly Ash
LAI Rongyong, WANG Wenxin, XIE Wenqian, DING Yimin
Department of Chemistry, School of Science, Shanghai University, Shanghai 200444
下载:  全 文 ( PDF ) ( 2017KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将肉豆蔻酸(MA)、棕榈酸(PA)、硬脂酸(SA)混合后形成的相变储能基材与工业固废粉煤灰通过熔融混合法制得MA-PA-SA/改性粉煤灰复合相变储能材料。MA、PA、SA低脂肪酸的质量比为m(MA)∶m(PA)∶m(SA)=56.82∶28.08∶15.10,MA-PA-SA与粉煤灰的质量比为m(MA-PA-SA)∶m(粉煤灰)=1∶1。采用红外(FT-IR)光谱、差热-热重(DTA-TG)分析、储/放热循环实验研究了复合材料的结构和热性能,FT-IR结果表明,MA-PA-SA低共熔物与改性粉煤灰为物理掺杂;DTA结果表明,复合材料的相变温度为45.8 ℃,相变焓为93.58 J/g。材料经过800次的储/放热循环后,其相变焓损失率为12.9%,表明该材料的储热性能稳定,具有较长的使用寿命。该新型复合相变储能材料具有合适的相变温度、较高的相变焓、储/放热性能稳定,且利用了工业固体废弃物粉煤灰,降低了材料的制备成本,在储能和固体废弃物的再利用方面具有实际应用意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赖榕永
王温馨
谢雯倩
丁益民
关键词:  相变储能材料  脂肪酸  粉煤灰    
Abstract: Amyristic-palmitic-stearic acid/modified fly ash composite phase change material (CPCM) has been prepared,which was a mixture of myristic acid, palmitic acid and stearic acid. The mass ratio was m(MA)∶m(PA)∶m(SA)=56.82∶28.08∶15.10 and m(PCM)∶m(fly ash) = 1∶1 were sui-table, by the heating method. The FT-IR, DTA-TG,and storage/release thermal cycling test has been used to determine the structure and thermal properties of the CPCM. The FT-IR results show that just between each constituent physical interaction. The DTA results indicate that the peak temperature and latent heat of CPCM are 45.8 ℃, 93.58 J/g, respectively. The rate of phase change enthalpy loss is 12.9% through 800 cycles of storage/release thermal cycling test, performance show that the CPCM has good thermal stability and long service life. All the results indicate that the CPCM has proper phase change temperature, high phase change enthalpy, good thermal stability, and fly ash a support material, which reduces the manufacturing cost of the material. It has practical application significance in the field of energy storage and solid waste utilization.
Key words:  phase change materials    fatty acids    fly ash
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O642.4+2  
基金资助: 上海市发展教育基金会(LM201445)
作者简介:  赖榕永,硕士研究生。2012年9月至2016年6月,在赣南师范大学获得材料化学专业理学学士学位,2016年9月至今,在上海大学攻读物理化学理学硕士。在校期间,参与发表文章4篇,参加第二十三届上海高校学生创造发明"科创杯"大赛中获得"发明创新三等奖"。研究方向主要是相变储能材料以及固体废弃物的综合利用。丁益民,上海大学副教授,硕士研究生导师。1992年研究生毕业于上海科学技术大学化学系(现上海大学),留校至今。在国内外学术期刊上发表论文50余篇,申请国家发明专利11项,其中授权6项。主要研究方向包括:熔盐相图研究、相变储能材料研发、固体废弃物综合利用研发等。ymding@t.shu.edu.cn
引用本文:    
赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
LAI Rongyong, WANG Wenxin, XIE Wenqian, DING Yimin. Preparation and Properties of Composite Phase Change Energy Storage Material MA-PA-SA/Modified Fly Ash. Materials Reports, 2019, 33(z1): 219-222.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/219
1 Jia R, Sun K, Li R, et al. The Journal of Chemical Thermodynamics,2017,115,233.
2 Yang H, Zhang H, Sui Y, et al. Applied Thermal Engineering,2018,128,489.
3 Wang H, Zhao L, Song G, et al. Solar Energy Materials and Solar Cells,2018,175,102.
4 Ke H Z. Applied Thermal Engineering,2017,113,1319.
5 Zhao A, An J, Yang J, et al.Applied Energy,2018,215,468.
6 Rao V V, Rp V, Ram V V.Energy and Buildings,2018,158,95.
7 Li W, Zhang X, Wang X, et al. Energy,2012,38(1),249.
8 Sari A. Energy Conversion & Management,2003,44,2277.
9 Hong H, Pan Y, Sun H, et al. Solar Energy Materials and Solar Cells,2018,174,307.
10 Zhu Y, Chi Y, Liang S, Luo X, et al. Solar Energy Materials and Solar Cells,2018,176,212.
11 Kahwaji S, Johnson M B, Kheirabadi A C, et al. Solar Energy Materials and Solar Cells,2017,167,109.
12 Noël J A, Allred, White M A, et al. The International Journal of Life Cycle Assessment,2014,20(3),367.
13 铁生年,柳馨,铁键.材料导报:综述篇,2015,29(6),138.
14 Su W, Darkwa J, Kokogiannakis G. Renewable and Sustainable Energy Reviews,2015,48,373.
15 张凡,欧阳平,张贤明,等.应用化工,2016,4(45),747.
[1] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[2] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[3] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[4] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[5] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[6] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[7] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[8] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[9] 李秀丽, 铁生年. 速溶高粘羧甲基纤维素钠对不同相变温度梯度芒硝基相变储能材料性能的影响[J]. 材料导报, 2018, 32(22): 3848-3852.
[10] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[11] 郭妍婷, 黄雪, 尹垚骐, 陈曼, 冯光炷. 蒙脱土增强二聚酸改性不饱和聚酯树脂的制备及性能[J]. 材料导报, 2018, 32(18): 3249-3254.
[12] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[13] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[14] 李北罡,王 敏. Fe/CTS/AFA复合材料对染料的高效吸附[J]. 《材料导报》期刊社, 2018, 32(10): 1606-1611.
[15] 张耀君, 余淼, 张力, 张懿鑫, 康乐. 一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*[J]. CLDB, 2017, 31(9): 50-56.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed