Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 1932-1938    https://doi.org/10.11896/cldb.17120047
  无机非金属及其复合材料 |
Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能
安伟佳, 田玲玉, 芮玉兰, 高雅萌, 崔文权
华北理工大学化学工程学院,唐山 063210
Preparation and Visible-light Photocatalytic Activity of Ag@AgCl/Bi2WO6Composite Photocatalyst
AN Weijia, TIAN Lingyu, RUI Yulan, GAO Yameng, CUI Wenquan
College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210
下载:  全 文 ( PDF ) ( 3274KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用简单的沉淀法制得Ag@AgCl纳米颗粒表面修饰三维花状Bi2WO6复合光催化剂(Ag@AgCl/Bi2WO6),利用XRD、UV-Vis、SEM、TEM、EDX、SAED及光电测试等对光催化剂的结构性能进行了表征,并考察了复合材料在可见光下对罗丹明B(RhB)降解反应的催化性能。研究表明:Ag@AgCl纳米颗粒平均粒径在50 nm左右,均匀地分散在Bi2WO6的表面上;贵金属Ag粒子的等离子共振效应极大地增强了复合材料对可见光的吸收利用;Ag@AgCl纳米粒子的引入可有效促进光生电荷的分离,实现复合材料光催化性能的提高。活性测试表明,0.25 g Ag@AgCl(20%,质量分数)/Bi2WO6光催化剂存在下,250 mL、10 mg/L的RhB溶液经可见光照射后降解率高达95%。另外,淬灭实验表明光催化降解过程中,·O2-、h+和·OH充当了主要的活性物种。本工作还结合表征结果及实验数据对复合光催化剂的作用机理进行了分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安伟佳
田玲玉
芮玉兰
高雅萌
崔文权
关键词:  Ag@AgCl/Bi2WO6  光催化  降解  可见光    
Abstract: Three-dimensional composites of flower-like Bi2WO6 decorated with Ag@AgCl nanoparticles (designated Ag@AgCl/Bi2WO6) were prepared via a simple precipitation method, and were subsequently characterized for structure and performance evalutation by using XRD, UV-Vis, SEM, TEM, EDX, SAED, and photoelectric test. Moreover, the products’ photocatalytic activity was investigated by the degradation reaction of Rhodamine B (RhB) under visible light irradiation. The experimental results confirmed the uniform distribution of Ag@AgCl nanoparticles, with an average particle size of 50 nm, on the surface of Bi2WO6. The Ag@AgCl/Bi2WO6 composites exhibit excellent UV-vis absorption due to the surface plasmonic resonance (SPR) of Ag nanoparticles. Meanwhile, the introduction of Ag@AgCl nanoparticles can greatly accelerate the separation of photogenerated carriers, thus improving the photocatalytic activity of the resultant composite materials. In the photocatalysis test achieved a degradation rate as high as 95% of RhB (250 mL, 10 mg/L) with the presence of 0.25 g Ag@AgCl(20wt%)/Bi2WO6 photocatalyst under visible light irradiation. In addition, it was determined by quenching test that the O2-, h+ and ·OH acts as main active species during the photocatalytic degradation process. Based on the experimental and theoretical results, the possible photocatalytic mechanism was proposed.
Key words:  Ag@AgCl/Bi2WO6    photocatalysis    degradation    visible light
                    发布日期:  2019-05-31
ZTFLH:  O643.3  
基金资助: 国家自然科学基金(51672081);河北省自然科学基金青年基金(B2018209356);华北理工大学青年科学基金(Z201503)
通讯作者:  anweijia@ncst.edu.cn   
作者简介:  安伟佳,2015年4月毕业于华北理工大学,获得工程硕士学位。于2015年4月至今在华北理工大学化学工程学院工作,主要从事光催化材料的制备与表征等。田玲玉,2019年4月毕业于华北理工大学,获得工程硕士学位,主要研究光催化领域材料的制备与表征等。欢迎投稿、订阅及刊登广告
引用本文:    
安伟佳, 田玲玉, 芮玉兰, 高雅萌, 崔文权. Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能[J]. 材料导报, 2019, 33(12): 1932-1938.
AN Weijia, TIAN Lingyu, RUI Yulan, GAO Yameng, CUI Wenquan. Preparation and Visible-light Photocatalytic Activity of Ag@AgCl/Bi2WO6Composite Photocatalyst. Materials Reports, 2019, 33(12): 1932-1938.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120047  或          http://www.mater-rep.com/CN/Y2019/V33/I12/1932
1 Gao C, Wang J, Xu H X, et al. Chemical Society Reviews, 2017, 46, 2799.
2 Jasmina D, Davor L, Vesna D, et al. Journal of Photochemistry and Photobiology: Chemistry, 2017, 336, 1.
3 Wee J O, Lutfi K P, Lling L T, et al. Applied Catalysis B: Environmental, 2016, 180, 530.
4 Zou X J, Dong Y Y, Li S J, et al. Solar Energy, 2018, 169, 392.
5 Geng Y M, Lei G J, Liao Y, et al. Journal of Environmental Chemical Engineering, 2017, 5(6), 5566.
6 Xu Y G, Xie M, Zhou T, et al. New Journal of Chemistry, 2015, 39, 5540.
7 Zameer H S, Ge Y Z, Ye W Y, et al. Materials Chemistry and Physics, 2017, 198, 73.
8 Geng G W, Guan B, Chen P L, et al. RSC Advances, 2017, 7, 9948.
9 Ju P, Wang Y, Sun Y, et al. Dalton Transactions, 2016, 45, 4588.
10Zheng H J, Niu P, Zhao Z F. RSC Advances, 2017, 7, 26943.
11Cui W Q, An W J, Liu L, et al.Journal of Hazardous Materials, 2014, 280, 417.
12Wang M, Qiao Z Y, Fang M H, et al.RSC Advances, 2015, 5, 94887.
13Wang D J, Xue G L, Zhen Y Z, et al. Journal of Materials Chemistry, 2012, 22, 4751.
14Wang D J, Guo L, Zhen Y Z, et al.Journal of Materials Chemistry A, 2014, 2, 11716.
15Wang B X, An W J, Liu L, et al.RSC Advances, 2015, 5, 3224.
16Zhang M, Bai X J, Liu D, et al.Applied Catalysis B: Environmental, 2015, 164, 77.
17Zhang C, Zhu Y F. Chemistry of Materials, 2005, 17, 3537.
18Liu R J, Zhang G J, Cao H B, et al. Energy & Environmental Science, 2016, 9, 1012.
19Liang Y H, Lin S L, Liu L, et al. Applied Catalysis B: Environmental, 2015, 164, 192.
20Liu L, Ding L, Liu Y G, et al. Applied Surface Science, 2016, 364, 505.
21Yu H B, Huang B B, Wang H, et al. Journal of Colloid and Interface Science, 2018, 522, 82.
22Dong R F, Tian B Z, Zeng C Y, et al.The Journal of Physical Chemistry C, 2013, 117 (1), 213.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[4] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[7] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[8] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[9] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[10] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[11] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[12] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[13] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[14] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[15] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed