Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 1926-1931    https://doi.org/10.11896/cldb.18030052
  无机非金属及其复合材料 |
K3V5O14的合成及光催化性能和吸附性能
李雅明1, 李艳军1, 张江1, 丛野1, 崔正威1, 袁观明1, 董志军1, 邹涛1, 李轩科1,2
1 武汉科技大学化学与化工学院,湖北省煤转化与新型炭材料重点实验室,武汉 430081
2 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
Synthesis, Photocatalytic Activity and Adsorption Performance of K3V5O14
LI Yaming1, LI Yanjun1, ZHANG Jiang1, CONG Ye1, CUI Zhengwei1, YUAN Guanming1, DONG Zhijun1, ZOU Tao1, LI Xuanke1,2
1 The Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials,School of Chemistry and Chemical Engineering,Wuhan University of Science and Technology, Wuhan 430081
2 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
下载:  全 文 ( PDF ) ( 3731KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用固相合成法制备出K3V5O14,利用X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)表征了其结构和形貌。研究了反应温度和反应时间对K3V5O14的结构、形貌和紫外可见吸收光谱的影响。探讨了材料的光催化性能和吸附性能,结果表明:在光催化性能测试中,具有层状结构的K3V5O14对亚甲基蓝(MB)的光降解作用较弱,75 min内降解率低于10%;但K3V5O14对亚甲基蓝染料表现出较高的选择性及吸附性能,其最佳投入量为0.5 g·L-1,在45 min时对亚甲基蓝的吸附率可达84.46%;吸附动力学拟合结果显示,K3V5O14对亚甲基蓝的吸附过程满足准二级吸附动力学,最大吸附容量为75.19 mg·g-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雅明
李艳军
张江
丛野
崔正威
袁观明
董志军
邹涛
李轩科
关键词:  五钒酸三钾(K3V5O14)  降解率  吸附率  可见光催化活性  吸附性能    
Abstract: K3V5O14 was prepared via solid phase method and characterized by powder X-ray diffraction (PXRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The influences of reaction temperatures and times for the structure, morphology and UV-Vis diffuse reflectance spectroscope of K3V5O14 were studied. The photocatalytic activity and adsorption performance were tested in details. The results show the photocatalytic activity of K3V5O14 with layer structure is weak by the degradation of methylene blue (MB) under visible light and the degradation rate is lower than 10% in 75 min. However, the adsorption performance is higher and MB is selected and adsorbed from cationic dyes including MB, methyl orange and Rhodamine B. The adsorption rate is 84.46% at 45 min when the optimal dosage of adsorbent is 0.5 g·L-1. The adsorption kinetics follows the pseudo-second-order kinetic models and the maximum adsorption capacity is 75.19 mg·g-1.
Key words:  tripotassium phyllo-pentavanadate (K3V5O14)    degradation rate    adsorption rate    photocatalytic activity    adsorption performance
                    发布日期:  2019-05-31
ZTFLH:  O611.62  
基金资助: 国家自然科学基金(21301132; 51402221; 51472186; 51372177); 国家留学基金(201708420019); 教育部高等学校博士学科点专项科研基金(20134219120002); 湖北省教育厅项目(Q20151109)
通讯作者:  yanwatercn@wust.edu.cn   
作者简介:  李雅明,硕士研究生,2014年9月至2017年6月在武汉科技大学取得工学硕士学位,申请国家发明专利1项,现工作于中钢集团洛阳耐火材料研究院有限公司。李艳军,武汉科技大学副教授,硕士研究生导师。2004年硕士研究生毕业于华中师范大学,毕业后到武汉科技大学化学与化工学院工作,期间获得武汉大学博士学位。2017-2018年到美国休斯顿大学材料研究与工程中心进行访问学习。在国内外学术期刊上发表20多篇论文,申请国家发明专利8项,其中授权6项。研究工作主要包括非线性光学材料、能源材料、光催化降解和光催化制氢等材料的设计、合成与性能的基础理论和应用研究。主持包括国家自然科学基金青年项目和教育部高等学校博士学科点专项科研基金等。
引用本文:    
李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
LI Yaming, LI Yanjun, ZHANG Jiang, CONG Ye, CUI Zhengwei, YUAN Guanming, DONG Zhijun, ZOU Tao, LI Xuanke. Synthesis, Photocatalytic Activity and Adsorption Performance of K3V5O14. Materials Reports, 2019, 33(12): 1926-1931.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030052  或          http://www.mater-rep.com/CN/Y2019/V33/I12/1926
1 Annadurai G, Juang R S, Leed J. Journal of Hazadous Materials, 2002, 92(3),263.
2 Lu Z Y, Shen L L, Zhang Q X. Industrial Water Treatment, 2004,24(3),12(in Chinese).
陆朝阳, 沈莉莉, 张全兴. 工业水处理, 2004, 24(3),12.
3 Fu W, Wang L, Huang J Z. Materials Review, 2011,25(s2),54 (in Chinese).
付文, 王丽, 黄军左. 材料导报, 2011,25(专辑18),54.
4 Tang J W, Zou Z G, Ye J H, et al. Catalysis Letters, 2014, 92(1),53.
5 Zou B, Yang T, Zhang Y X, et al. Journal of Synthetic Crystals, 2014, 43(6),1444.
邹斌, 杨添, 张羽溪,等.人工晶体学报, 2014, 43(6),1444.
6 Miao Y, Yin H B, Peng L, et al. RSC Advances, 2016, 6, 13498.
7 Wang D J, Shen H D, Guo L, et al. New Journal of Chemistry, 2016, 40(10), 8614.
8 Chang C, Gao N. Materials Review A: Review Papers, 2016, 30(8),1 (in Chinese).
常春, 高娜.材料导报:综述篇, 2016, 30(8),1.
9 Wan J, Sun L, Fan J, et al. Applied Surface Science, 2015, 355,615.
10Soma K, Iwase A, Kudo A, et al. Catalysis Letters, 2014, 144(11),1962.
11Kekade S S, Gaikwad P V, Raut S A, et al. ACS Omega, 2018, 3(5),5853.
12Ri C N, Kim S G, Jong J Y, et al. New Journal of Chemistry, 2018, 42(1),647.
13Qu Z, Liu P, Yang X, et al. Materials, 2016, 9(3),129.
14Qiao X B, Seo H, et al. Materials Letters, 2014, 136,322.
15Peng J, Fan H, Ai S, et al. Research on Chemical Intermediates, 2015, 41(6),1.
16Sivakumara V, Suresha R, Giribabua K, et al. Solid State Sciences, 2015, 39,34.
17Malathi A, Madhavan J, Ashokkumar M, et al. Applied Catalysis, A: General, 2018, 555,47.
18Wu Min, Jing Qifeng, Feng Xinyan, et al. Applied Surface Science, 2018, 427(Part, A),525.
19Tan Hui Ling, Amal Rose, Ng Yun Hau. Journal of Materials Chemistry A: Materials for Energy and sustainability, 2017, 5(32), 16498.
20Manev V, Momchilov A, Nassalevska A. Journal of Power Sources, 1993, 44(1-3), 561.
21Li G H, Su G B, Zhuang X, et al.Optical Materials, 2004,27,39.
22Huang S P, Wu D S, Shen J, et al. Journal of Physics: Condensed Matter, 2006, 18(23),5535.
23Zhang W G, Halasyamani P. Cryst Eng Comm, 2012, 14(20),6839.
24Yuan X, Liu Y Y, Zhuo S P, et al. Acta Chimica Sinica, 2007, 65(17),1814 (in Chinese).
袁勋,柳玉英,禚淑萍,等.无机化学学报, 2007, 65(17),1814.
25Huang J H, Huang K L, Liu S Q, et al. Colloids and Surfaces A: Physi-cochem and Engineering Aspects, 2008, 330,55.
26Ma L K, Zhan F R. Chemical Engineering,2016(1),28 (in Chinese).
马留可, 詹福如. 化学工程, 2016(1),28.
27Kang H P, Sun Z Y, Liu J Y, et al. Chinese Journal of Environmental Engineering, 2015, 9(4),1620(in Chinese).
康宏平, 孙振亚, 刘建永,等. 环境工程学报, 2015, 9(4),1620.
28Liu X L, Song J M, Dong N, et al. Acta Physico-Chimica Sinica, 2016, 32(7),1844 (in Chinese).
刘晓灵, 宋继梅, 董纳,等. 物理化学学报, 2016, 32(7),1844.
29Vimonses V, Lei S, Bo J, et al. Chemical Engineering Journal, 2009, 148(2-3),354.
30Ho Y S, Mckay G. Process Biochemistry, 1993,34(5),451.
[1] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[2] 程 波,向真才,郭 恒,熊云威. 煤岩材料对瓦斯吸附性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1513-1518.
[3] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed