Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 143-148    https://doi.org/10.11896/j.issn.1005-023X.2017.01.020
  环境修复材料 |
吸附材料再生机理研究进展
刘晓咏,欧阳平
重庆工商大学废油资源化技术与装备教育部工程研究中心,重庆 400067
Research Progress of Regeneration Mechanisms in Adsorption Materials
LIU Xiaoyong, OUYANG Ping
Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Technology and Business University, Chongqing 400067
下载:  全 文 ( PDF ) ( 1456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着吸附材料日趋广泛的应用,其后处理成为重要议题。再生是处理吸附材料的有效途径,具有节约资源、减少环境污染等现实意义。再生机理作为再生技术的重要内容,已得到关注。阐述了热再生、生物再生、电化学再生、微波加热再生、超临界流体再生、超声波再生、光催化再生和等离子体再生等几种再生方法机理,总结了研究人员对各再生方法机理的不同认识,指出了各再生技术的优缺点。最后,从机理角度展望了未来再生研究的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓咏
欧阳平
关键词:  吸附材料  再生  机理    
Abstract: With the widely use of adsorption materials, the post-treatment has become an important issue. Regeneration is an effective way to treat the adsorption materials, which is resource-conserving and environment-friendly. As an important content of regeneration techniques, the regeneration mechanism has been concerned. The mechanisms of thermal regeneration, biological regene-ration, electrochemical regeneration, microwave regeneration, supercritical fluid regeneration, ultrasonic regeneration, photocatalytic regeneration and plasma regeneration are elaborated in this paper. The various understandings of regeneration mechanisms between different researchers are summarized. Meanwhile, the advantages and disadvantages of each technology are pointed out. In the end of the paper, some prospects for the future from the perspective of regeneration mechanisms are presented.
Key words:  adsorption materials    regeneration    mechanism
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TQ424  
基金资助: 中国博士后科学基金项目(2015M582524);重庆市教委科研项目(KJ1400637;KJZH14210);重庆市博士后特别资助项目(Xm2016023);重庆工商大学研究生创新型项目(yiscxx2016-060-38)
作者简介:  刘晓咏:男,1992年生,硕士研究生,从事吸附材料再生的研究 欧阳平:通讯作者,男,副研究员,研究方向为吸附材料及油料应用 E-mail:oyp9812@126.com
引用本文:    
刘晓咏, 欧阳平. 吸附材料再生机理研究进展[J]. 材料导报, 2017, 31(1): 143-148.
LIU Xiaoyong, OUYANG Ping. Research Progress of Regeneration Mechanisms in Adsorption Materials. Materials Reports, 2017, 31(1): 143-148.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.020  或          http://www.mater-rep.com/CN/Y2017/V31/I1/143
1 Liu X,Ouyang P,Chen L. Research progress of regeneration technology of adsorption material [J]. Modern Chem Ind,2015,35(1):37(in Chinese).
刘晓咏,欧阳平,陈凌.吸附材料再生技术研究进展[J]. 现代化工,2015,35(1):37.
2 Chen W,Cannon F S. Thermal reactivation of ammonia-tailored granular activated carbon exhausted with perchlorate [J]. Carbon,2005,43(13):2742.
3 Salvador F,Sanchez Jimenez C. A new methord for regeneration activated carbon by thermal desorption with liquid water under subcritical conditions [J]. Carbon,1996,34(4):511.
4 Duan X,Kannan C S,Qu W W,et al. Thermal regeneration of spent coal-based activated carbon using carbon dioxide: Process optimisa-tion,methylene blue decolorisation isotherms and kinetics[J]. Rev Progress Coloration Related Topics,2012,128(6):464.
5 Ledesma B,Román S,et al. Fundamental study on the thermal regeneration stages of exhausted activated carbons: Kinetics [J]. J Thermal Anal Calorimetry,2014,115(1):537.
6 Cazetta A L,Junior O P,Vargas A M M,et al. Thermal regeneration study of high surface area activated carbon obtained from coconut shell: Characterization and application of response surface methodo-logy [J]. J Anal Appl Pyrolysis,2013,101(5):53.
7 Bhagawan D,Poodari S,Kumar G R,et al. Reactivation and recycling of spent carbon using solvent desorption followed by thermal treatment (TR) [J]. J Mater Cycles Waste Manage,2015,17(1):185.
8 Bagreev A,Rahman H,Bandosz T J. Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent [J]. Carbon,2001,39(9):1319.
9 Narbaitz R M,Mcewen J. Electrochemical regeneration of field spent GAC from two water treatment plants [J]. Water Res,2012,15(15):4852.
10 Okwadha G D O,Li J,Ramme B,et al. Thermal removal of mercury in spent powdered activated carbon from Toxecon process [J]. J Environ Eng,2009,135(10):1032.
11 Wang J,Wei G,Chong J,et al. Experiment research on the technologies of heat treatment, recycling and regeneration of SF6 molecular sieve adsorbent[J]. J Chem Pharmaceut Res,2014,6(7):2407.
12 Cho J H,Kim Y S,Jeon S B,et al. Improvement of thermal regeneration of spent granular activated carbon using air agent: Application of sintering and deoxygenation [J]. Korean J Chem Eng,2014,31(9):1641.
13 Zhang X,Wang Z,Gu X. Simple combination of biodegradation and carbon adsorption—The mechanism of the biological activated carbon process [J]. Water Res,1991,25(2):165.
14 Aktas,zgür,een,et al. Effect of activation type on bioregeneration of various activated carbons loaded with phenol [J]. J Chem Technol Biotechnol,2006,81(7):1081.
15 Alexander S S,Larisa Y K,Konstantin G I. The BAC-process for treatment of waste water containing non-ionogenic synthetic surfactants [J]. Water Res,2001,35(13):3265.
16 Lee K M,Lim P E. Bioregeneration of powdered activatedcarbon in the treatment of alkyl-substituted phenolic compounds in simulta-neous adsorption and bioregeneration process [J]. Chemosphere,2005,58:407.
17 Wu Z,Ying A,Wang Z, et al. Study on zeolite enhanced contact-adsorption regeneration-stabilization process for nitrogen removal [J]. J Hazard Mater,2008, 156(1-3):317.
18 Gu X,Zhang L,Teng H,et al. Study on the mechanisms of bio-regeneration of saturated adsorption resin [J]. Ind Water Treat,2010,30(8):50(in Chinese).
顾锡慧,张玲,滕厚开,等.饱和吸附树脂的生物再生机理研究[J]. 工业水处理 2010,30(8):50.
19 Kaushik Nath,Mathurkumar S Bhakhar.Microbial regeneration of spent activated carbon dispersed with organic contaminants:Mechanism,efficiency,and kinetic models [J]. Environ Sci Pollut Res,2011,18(4):534.
20 Berenguer R,Marco-Lozar J P,Quijada C,et al. Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium [J]. Carbon,2010,48(10):2734.
21 García-Otón M,Montilla F,Lillo-Ródenas M A,et al. Electrochemical regeneration of activated carbon saturated with toluene [J]. J Appl Electrochem,2005,35(3):319.
22 Berenguer R,Marco-lozar J P,Quijada C,et al. Effect of electrochemical treatments on the surface chemistry of activated carbon [J]. Carbon,2009,47(4):1018.
23 Chen R,Zheng X,Hu X. Electrochemical regeneration of active carbon fiber loaded with SCN- in diluted solutions [J]. CIESC J,2011,62(S2):102(in Chinese).
陈榕,郑翔龙,胡熙恩. 活性炭纤维吸附稀溶液中SCN-的电化学再生[J].化工学报,2011,62(S2):102.
24 Yuen F K,Hameed B H. Recent developments in the preparation and regeneration of activated carbons by microwaves [J]. Adv Colloid Interface Sci,2009,149(1-2):19.
25 Liu X,Ouyang P. Research progress on microwave radiation regene-ration of adsorbing material [J]. Appl Chem Ind,2016,45(2):328(in Chinese).
刘晓咏,欧阳平.吸附材料微波辐射再生的研究进展[J]. 应用化工,2016,45(2):328.
26 Cui C,Zheng Q,Han Y,et al. Rapid microwave-assisted regeneration of magnetic carbon nanotubes loaded with p-nitrophenol [J]. Appl Surf Sci,2015,346:99.
27 Horikoshi S,Sumi T,Serpone N. A hybrid microreactor/microwave high-pressure flow system of a novel concept design and its application to the synthesis of silver nanoparticles [J]. Chem Eng Process Process Intensification,2013,73(7):59.
28 Lv G,Wu L,Wang X,et al. Regeneration of caramel saturated activated carbon jointly by microwave and extractive method [J]. Int J Chem Reactor Eng,2012,10(1):137.
29 Chang R,Zhou Y,Lu H,et al. Desorption and recovery of ketone organic molecules on Y-zeolite adsorber under microwave irradiation [J]. Chinese J Environ Eng,2014,8(12):5399(in Chinese).
常仁芹,周瑛,卢晗锋,等.微波加热脱附回收Y分子筛吸附的酮类有机分子[J]. 环境工程学报,2014,8(12):5399.
30 Liang M T,Liang R C,Lin C H. Regeneration of cobalt-contaminated activated carbon by supercritical carbon dioxide extraction [J]. Adsorption-J Int Adsorpt Soc,2012,18(5-6):461.
31 Chung S,Pei L. Supercritical CO2 desorption of activated carbon loaded with 2,2,3,3-tetrafluoro-1-propanol in a rotating packed bed [J]. Environ Sci Technol,2008,42(6):2150.
32 Costa A E,Santana A,Quadri M B,et al. Glycerol desorption from ion exchange and adsorbent resin using supercritical fluid technology:An optimization study [J]. J Supercritical Fluids,2011,58(2):226.
33 Hoffmann M R,Hua I,Hchemer R. Application of ultrasonic irra-diation for the degradation of chemical contaminants in water [J]. Ultrasonics Sonochem,1996,3(3):S163.
34 Suslick K S,Iii M N,Didenko Y. Sonochemistry and sonoluminescence [M]. Berlin: Springer Netherlands,1999.
35 Saoudi F,Hamdaoui O. Innovative technique for 4-chlorophenol desorption from granular activated carbon by low frequency ultrasound: Influence of operational parameters [J]. Microp Mesop Mater,2011,141(1-3):69.
36 Li J,Zhang L,Yang J,et al. Ultrasonic regeneration of organically modified attapulgite clay adsorbent after adsorbing nickel(Ⅱ) ion [J]. Mater Protect,2014,47(1):55(in Chinese).
李静萍,张立威,杨佳静,等. 超声波法对吸附Ni(Ⅱ)吸附剂的再生[J]. 材料保护,2014,47(1):55.
37 Yates J T. Photochemistry on TiO2:Mechanisms behind the surface chemistry [J]. Surf Sci,2009,603(2):1605.
38 Yap P S,Lim T T. Solar regeneration of powdered activated carbon impregnated with visible-light responsive photocatalyst: Factors affecting performances and predictive model [J]. Water Res,2012,46(9):3054.
39 Ma J,Chen C,Yu F. Self-regenerative and self-enhanced smart graphene/Ag3PO4 hydrogel adsorbent under visible light [J]. New J Chem,2016,40(4):3208.
40 Chu J,Liu Y,Wang H,et al. Regeneration of acid orange 7-exhausted granular activated carbon with pulsed discharge plasma [J]. High Voltage Eng,2015,41(1):251(in Chinese).
储金宇,刘永杰,王慧娟,等. 脉冲放电等离子体再生吸附AO7饱和活性碳[J]. 高电压技术,2015,41(1):251.
41 Wang H,Guo H,Liu Y,et al. Regeneration of acid orange 7 exhausted granular activated carbon using pulsed discharge plasmas [J]. Plasma Sci Technol,2015,41(10):251.
42 Zhang Y,Sun B,Deng S,et al. Methyl orange degradation by pulsed discharge in the presence of activated carbon fibers [J]. Chem Eng J,2010,159(1-3):47.
43 Yang C,Cao D,Yu M,et al. Experiment on regeneration of activated carbon saturated with dibutyl phthalate by non-thermal plasma [J]. High Voltage Eng,2015,41(10):3505(in Chinese).
杨长河,曹定龙,俞明芬,等.吸附DBP饱和活性炭的低温等离子体再生实验[J]. 高电压技术,2015,41(10):3505.
[1] 展红全, 邓册, 吴传琦, 李小红, 谢志鹏, 汪长安. 新颖十二面体钛酸钡纳米晶体的水热生长机理[J]. 材料导报, 2019, 33(z1): 98-101.
[2] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[3] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[4] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[5] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[6] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[7] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[8] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[9] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[10] 刘兆麟. 纳米蛛网纤维材料的可控构筑与应用[J]. 材料导报, 2019, 33(5): 907-916.
[11] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[12] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[13] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[14] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[15] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed