Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2576-2583    https://doi.org/10.11896/j.issn.1005-023X.2018.15.007
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
用于太阳能集热介质的纳米铜制备技术与铜纳米流体性能综述
周璐, 马红和, 马素霞, 杜慧娟
太原理工大学电气与动力工程学院,太原 030024
A State-of-Art Review on Preparation Methodology of Nano-copper and Propertiesof Copper Nanofluids Used in Solar Radiation Absorbing Materials
ZHOU Lu, MA Honghe, MA Suxia, DU Huijuan
School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024
下载:  全 文 ( PDF ) ( 2025KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米流体技术的不断发展为直接吸收式太阳能集热介质的研究提供了强有力的支持。铜价格低廉、储量丰富且导热性能良好,将纳米尺度的铜粒子稳定分散于传统集热介质中制得的纳米流体悬浮液对可见光波段表现出强吸收性能。本文首先对纳米流体中常见的球形、立方体、棒状和线状铜纳米粒子添加物的水热还原制备方法进行了综述,重点讨论了表面活性剂在产物形貌控制中的作用及其对纳米粒子在基液中分散稳定性的影响。进而分别对铜纳米流体的导热系数、粘度、比热及光能辐射特性的研究现状进行了归纳总结,给出了铜纳米流体在直接吸收式太阳能集热系统中的应用现状。最后,提出了铜纳米流体应用于太阳集热器循环工质尚需解决的问题及进一步的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周璐
马红和
马素霞
杜慧娟
关键词:  纳米铜  水热还原  形貌控制  分散稳定性  纳米流体  太阳能  热物性  辐射特性    
Abstract: The development of nanofluids has strongly alleviated the research of solar radiation absorbing materials serving in direct absorption type solar energy collection systems. Copper has the advantages of low cost, abundant source and excellent thermal conductivity. Moreover, the copper nanofluids prepared by dispersing nanoscale copper particles in the traditional solar absorbing mediums display strong absorptivity to visible light. This paper firstly reviews the preparation methodology of nanocopper additives with various morphologies, i.e. sphere, cube, rod and wire, by hydrothermal reduction method, and emphatically discusses the effects of surfactants on the morphology control and dispersion stability of nanocopper in the mediums. Besides, it also summarizes the research status of physical characteristics of the copper nanofluids such as thermal conductivity, viscosity, specific heat and light radiation, and sketches out copper nanofluids’ application in the direct absorption type solar energy collection systems. Finally, some unresolved problems and the corresponding suggestions for further research are proposed.
Key words:  nano-copper    hydrothermal reduction    morphology control    dispersion stability    nanofluid    solar energy    thermophysical property    radiation characteristic
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TK512  
基金资助: 国家自然科学基金(51706151)
作者简介:  周璐:女,1987年生,讲师,主要从事纳米流体制备及应用技术研究 E-mail:zhoulu19870905@163.com
引用本文:    
周璐, 马红和, 马素霞, 杜慧娟. 用于太阳能集热介质的纳米铜制备技术与铜纳米流体性能综述[J]. 材料导报, 2018, 32(15): 2576-2583.
ZHOU Lu, MA Honghe, MA Suxia, DU Huijuan. A State-of-Art Review on Preparation Methodology of Nano-copper and Propertiesof Copper Nanofluids Used in Solar Radiation Absorbing Materials. Materials Reports, 2018, 32(15): 2576-2583.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.007  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2576
1 Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[C]∥ASME International Mechanical Engineering Congress & Exposition. San Francisco, 1995.
2 Patel H E, Sundararajan T, Das S K. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids[J].Journal of Nanoparticle Research,2010,12(3):1015.
3 Zhang L. Radiative properties and photothermal conversion perfor-mance of ionic liquid based nanofluids[D].Guangzhou: South China University of Technology,2015(in Chinese).
张龙.离子液体基纳米流体的辐射特性和光热转换性能研究[D].广州:华南理工大学,2015.
4 Taylor R A, Phelan P E, Otanicar T P, et al. Applicability of nanofluids in high flux solar collectors[J].Journal of Renewable and Sustainable Energy,2011,3(2):4.
5 Chen F. Characteristics of nanofluids used in solar thermal collectors[D].Wuhan: Wuhan Institute of Technology,2016(in Chinese).
陈飞.太阳能集热器装置用纳米流体特性研究[D].武汉:武汉工程大学,2016.
6 Mao L B, Zhang R Y, Ke X F. Study on the preparation solar of one new recycle fluid for collector[J].Renewable Energy Resources,2010,28(3):11(in Chinese).
毛凌波,张仁元,柯秀芳.一种新型太阳能集热器循环工质的制备[J].可再生能源,2010,28(3):11.
7 Xu G Y, Chen W, Zhang X S, et al. Performance and heat loss analysis on the direct absorption medium-temperature solar collector using oil-based nanofluid[J].Journal of Engineering Thermophysics,2015,36(5):960(in Chinese).
徐国英,陈伟,张小松,等.纳米流体直接吸收式太阳能中温集热与热损分析[J].工程热物理学报,2015,36(5):960.
8 张立德.纳米材料和纳米结构[J].中国科学院院刊,2001,16(6):444.
9 Wu S, Wang H, Xiao S, et al. Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs[J].Procedia Engineering,2011,2(1):240.
10 He Q B, Wang S F, Zeng S Q, et al. Experimental investigation on radiation characteristic of nanofluids for direct absorption solar thermal energy systems[J].Journal of Refrigeration,2014(1):109(in Chinese).
何钦波,汪双凤,曾社铨,等.直接吸收式太阳能集热纳米流体辐射特性实验研究[J].制冷学报,2014(1):109.
11 Mao L B, Zhang R Y, Ke X F. Dispersion of nano-copper in cycle fluids of solar collector[J].Nonferrous Metals,2010,62(1):26(in Chinese).
毛凌波,张仁元,柯秀芳.纳米铜粉在太阳能集热器循环工质中的分散[J].有色金属工程,2010,62(1):26.
12 Haddad Z, Abid C, Oztop H F, et al. A review on how the resear-chers prepare their nanofluids[J].International Journal of Thermal Sciences,2014,76(76):168.
13 Xie H W, Tian Y, Yang W L, et al. Nano-copper: Wet-chemical synthesis and applications[J].Journal of Functional Materials,2017,48(4):4060(in Chinese).
谢汉文,田宇,杨万亮,等.纳米铜的湿化学合成及其应用[J].功能材料,2017,48(4):4060.
14 Granata G, Yamaoka T, Pagnanelli F, et al. Study of the synthesis of copper nanoparticles: The role of capping and kinetic towards control of particle size and stability[J].Journal of Nanoparticle Research,2016,18(5):1.
15 Cheng X, Zhang X, Yin H, et al. Modifier effects on chemical reduction synthesis of nanostructured copper[J].Applied Surface Science,2006,253(5):2727.
16 Kuo P L, Liang W J, Wang F Y. Hyperbranch-polyethyl eniminated functional polymers Ⅱ: Effect of polyethyleniminated polyoxypropylenediamines on copper nanoparticle formation in aqueous solution[J].Colloid and Polymer Science,2006,284(4):435.
17 Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies[J].Journal of Physical Chemistry B,2000,104(6):1153.
18 Zhou G, Lu M, Yang Z. Aqueous synthesis of copper nanocubes and bimetallic copper/palladium core-shell nanostructures[J].Langmuir,2006,22(13):5900.
19 Jin M, He G, Zhang H, et al. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent[J].Angewandte Chemie,2011,50(45):10560.
20 Abeywickrama T, Sreeramulu N N, Xu L, et al. A versatile method to prepare size- and shape-controlled copper nanocubes using an aqueous phase green synthesis[J].RSC Advances,2016,6:91949.
21 Rathmell A R, Bergin S M, Hua Y L, et al. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films[J].Advanced Materials,2010,22(32):3558.
22 Xu C, Wang Y, Chen H, et al. Large-scale synthesis of ultralong copper nanowires via a facile ethylenediamine-mediated process[J].Journal of Materials Science Materials in Electronics,2014,25(5):2344.
23 Kumar D V, Kim I, Zhong Z, et al. Cu(Ⅱ)-alkyl amine complex mediated hydrothermal synthesis of Cu nanowires: Exploring the dual role of alkyl amines[J].Physical Chemistry Chemical Physics,2014,16(40):22107.
24 Ruan H, Wang R, Luo Y, et al. Study on synthesis and growth mechanism of copper nanowires via a facile oleylamine-mediated process[J].Journal of Materials Science Materials in Electronics,2016,27(9):9405.
25 Ebrahimzadeh F, Fung K Z. One-pot synthesis of size and shape controlled copper nanostructures in aqueous media and their application for fast catalytic degradation of organic dyes[J].Journal of Chemical Research,2016,40(9):552.
26 Zhang X, Zhang D, Ni X, et al. One-step preparation of copper nanorods with rectangular cross sections[J].Solid State Communications,2006,139(8):412.
27 Dehghanpour S, Mahmoudi A, Shadpour S. Selective synthesis of copper microsheets and ultralong microwires via a surfactant assisted hydrothermal process[J].Russian Journal of General Chemistry,2015,85(5):1167.
28 Liu Y, Liu Z, Lu N, et al. Facile synthesis of polypyrrole coated copper nanowires: A new concept to engineered core-shell structures[J].Chemical Communications,2012,48(20):2621.
29 Wang Y, Asefa T. Poly(allylamine)-stabilized colloidal copper nanoparticles: Synthesis, morphology, and their surface-enhanced Raman scattering properties[J].Langmuir,2010,26(10):7469.
30 Bhanushali S, Jason N N, Ghosh P C, et al. Enhanced thermal conductivity of copper nanofluids: The effect of filler geometry[J].ACS Applied Materials and Interfaces,2017,9(22):18925.
31 Ye S, Stewart I E, Chen Z, et al. How copper nanowires grow and how to control their properties[J].Accounts of Chemical Research,2016,49(3):442.
32 Kim H, Choi S H, Kim M, et al. Seed-mediated synthesis of ultra-long copper nanowires and their application as transparent conducting electrodes[J].Applied Surface Science,2017,422:731.
33 Kole M, Dey T K. Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids[J].Applied Thermal Engineering,2013,50(1):763.
34 Garg J, Poudel B, Chiesa M, et al. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid[J].Journal of Applied Physics,2008,103(7):074301.
35 Wang X J, Zhu D S, Yang S. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids[J].Chemical Phy-sics Letters,2009,470(1-3):107.
36 Peng H, Ding G, Hu H. Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid[J].Experimental Thermal and Fluid Science,2011,35(6):960.
37 Kathiravan R, Kumar R, Gupta A, et al. Preparation and pool boi-ling characteristics of silver nanofluids over a flat plate heater[J].Heat Transfer Engineering,2012,33(2):69.
38 Kumar S A, Meenakshi K S, Narashimhan B R V, et al. Synthesis and characterization of copper nanofluid by a novel one-step method[J].Materials Chemistry and Physics,2009,113(1):57.
39 Robertis E D, Cosme E H H, Neves R S, et al. Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids[J].Applied Thermal Engineering,2012,41(41):10.
40 Xuan Y, Qiang L. Heat transfer enhancement of nanofluids[J].International Journal of Heat and Fluid Flow,2000,21(1):58.
41 Yu W, Xie H, Chen L, et al. Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper na-noparticles[J].Powder Technology,2010,197(3):218.
42 Liu M S, Lin C C, Tsai C Y, et al. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method[J].International Journal of Heat and Mass Transfer,2006,49(17-18):3028.
43 Eastman J A, Choi S U S, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J].Applied Physics Letters,2001,78(6):718.
44 Sinha K, Kavlicoglu B, Liu Y, et al. A comparative study of thermal behavior of iron and copper nanofluids[J].Journal of Applied Phy-sics,2009,106(6):064307.
45 Yu W, Yu W, Xie H, et al. Thermal conductivity of composite materials containing copper nanowires[J].Journal of Nanomaterials,2016,2016:8.
46 Zhang Y N, Liu N, You L T, et al. Research progress in the effect of surfactants on the characteristics of H2O-based nanofluids[J].Chemical Industry and Engineering Progress,2015,34(4):903(in Chinese).
张亚楠,刘妮,由龙涛,等.表面活性剂对水基纳米流体特性影响的研究进展[J].化工进展,2015,34(4):903.
47 Wang X J, Li X F. Influence of pH on nanofluids’ viscosity and thermal conductivity[J].Chinese Physics Letters,2009,26(5):183.
48 Lee D, Kim J W, Kim B G. A new parameter to control heat transport in nanofluids: Surface charge state of the particle in suspension[J].Journal of Physical Chemistry B,2006,110(9):4323.
49 Namburu P K, Das D K, Tanguturi K M, et al. Numerical study of turbulent flow and heat transfer characteristics of nanofluids consi-dering variable properties[J].International Journal of Thermal Sciences,2009,48(2):290.
50 Devendiran D K, Amirtham V A. A review on preparation, characterization, properties and applications of nanofluids[J].Renewable and Sustainable Energy Reviews,2016,60:21.
51 He Q, Wang S, Zeng S, et al. Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems[J].Journal of Refrigeration,2014,73(5):150.
52 Wei W. Radiative properties of nanofluids and its utilization in solar thermal power systems[D].Hangzhou: Zhejiang University,2013(in Chinese).
魏葳.纳米流体的辐射特性及其在太阳能热利用中的应用研究[D].杭州:浙江大学,2013.
53 Mao L B, Zhang R Y, Ke X F, et al. Photo-thermal properties of nanofluid-based solar collector[J].Acta Energlae Solaris Sinica,2009,30(12):1647(in Chinese).
毛凌波,张仁元,柯秀芳,等.纳米流体太阳集热器的光热性能研究[J].太阳能学报,2009,30(12):1647.
54 Chen H, Zhu Q Z, Li J D, et al. Study of the performance of a direct absorption solar collector using nanofluids as working fluids[J].Acta Energlae Solaris Sinica,2016,37(7):1845(in Chinese).
陈慧,朱群志,李金斗,等.纳米流体为工质的直吸式太阳集热器性能研究[J].太阳能学报,2016,37(7):1845.
55 Zamzamian A, Keyanpour Rad M, Kiani Neyestani M, et al. An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors[J].Renewable Energy,2014,71:658.
[1] 王若男, 刘斌, 陈爱强, 杨文哲, 马晓燕. 纳米流体液滴在铁板上蒸发的动力学研究[J]. 材料导报, 2019, 33(z1): 132-135.
[2] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[3] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[4] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[5] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[6] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[7] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[8] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[9] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[10] 何苗, 陈建林, 周厅, 彭卓寅, 任延杰, 陈荐. 陷光结构应用于太阳能电池的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 696-707.
[11] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[12] 彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠. 无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J]. 材料导报, 2018, 32(23): 4027-4040.
[13] 李博, 徐晓婷, 郑雪晴. 离子液体在有机光电转换器件中的应用研究进展[J]. 材料导报, 2018, 32(23): 4116-4124.
[14] 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115.
[15] 任曼飞, 黄国强. 用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比[J]. 材料导报, 2018, 32(23): 4067-4071.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed