Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 22100093-7    https://doi.org/10.11896/cldb.22100093
  无机非金属及其复合材料 |
ECC全包裹混凝土的抗硫酸盐侵蚀和抗冻性能
康迎杰1,2,3, 郭自利4, 叶斌斌4, 潘鹏4,5,*
1 石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043
2 河北省风工程和风能利用工程技术创新中心,石家庄 050043
3 石家庄铁道大学土木工程学院,石家庄 050043
4 清华大学土木工程系,北京 100084
5 土木工程安全与耐久教育部重点实验室,北京 100084
Sulfate Corrosion and Frost Resistances of Concrete Confined with Engineered Cementitious Composites(ECC)
KANG Yingjie1,2,3, GUO Zili4, YE Binbin4, PAN Peng4,5,*
1 State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 Innovation Center for Wind Engineering and Wind Energy Technology of Hebei Province, Shijiazhuang 050043, China
3 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
4 Department of Civil Engineering, Tsinghua University, Beijing 100084, China
5 MOE Key Laboratory of Civil Engineering Safety and Durability, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 4146KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 工程用水泥基复合材料(ECC)和混凝土组合构件在力学性能上体现出一定的优势,但目前缺乏对此类组合构件耐久性能的定性和定量评价。为研究该类组合构件的抗硫酸盐侵蚀和抗冻性能,采用二次浇筑方式制备出ECC全包裹混凝土组合试件,随后对混凝土、ECC和ECC全包裹混凝土试件进行了硫酸盐干湿循环和冻融循环试验,建立了耐久性损伤模型,并预测了服役寿命。结果表明,从抗压强度、表观状态和质量损失的变化规律来看,ECC全包裹混凝土试件相比普通混凝土试件抗硫酸盐侵蚀和抗冻性能均有显著提升,提升效果随包裹厚度的增大而提高。另外,ECC全包裹混凝土试件在受环境侵蚀后仍能维持良好的表观状态,预测的服役寿命更长,其中尤以在硫酸盐侵蚀环境中表现突出。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康迎杰
郭自利
叶斌斌
潘鹏
关键词:  ECC全包裹混凝土  抗硫酸盐侵蚀  抗冻性能  组合试件    
Abstract: Engineeredcementitious composites(ECC)-concrete combined components have exhibited specific advantages in terms of mechanical properties. However there currently lacks qualitative and quantitative evaluation of the durability performance of such combined components. In order to study the sulfate corrosion and frost resistance of ECC-concrete combined components, the combined specimens of concrete confined with ECC were prepared through secondary pouring method. The cyclic tests of sulfate drying-wetting alternations and freeze-thaw alternations were carried out on the concrete, the ECC, and the combined specimens. The damage model was established and the service life prediction was performed. Results showed that resistances of the combined specimens to sulfate corrosion and frost were significantly improved compared with the concrete specimen from the perspectives of variations of compressive strength, apparent morphology, and mass loss, and the magnitude of these improvements increased with increasing thickness of ECC. Moreover, the combined specimens maintained apparent status better than the concrete specimen after exposed to environmental erosion, and also had longer predicted service lifetime, especially in the sulfate corrosion environment.
Key words:  concrete confined with engineered cementitious composites(ECC)    sulfate corrosion resistance    frost resistance    combined spe-cimen
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TU528.1  
基金资助: 国家重点研发计划(2019YFC1907204)
通讯作者:  *潘鹏,清华大学工学学士、硕士、日本京都大学工学博士、日本学术振兴会外国特别研究员。现为清华大学土木水利学院教授、博士生导师,主要研究方向为韧性城镇与基础设施的建设和评估、高性能减隔震结构。发表学术论文100余篇,其中SCI收录70余篇。主编2部、参编6部国家和行业标准,撰写中文著作4部,英文著作1部。曾获2016年国家科技进步二等奖1项,2018年国家科技进步一等奖1项,2021年科学探索奖,以及其他省部级科研奖励5项。入选2017年教育部长江学者奖励计划特聘教授,2018年科技部中青年科技创新领军人才,2019年国家高层次人才特殊支持计划(万人计划)。panpeng@tsinghua.edu.cn   
作者简介:  康迎杰,博士,讲师。2019年6月于北京工业大学获得工学博士学位,2019年7月至2021年10月在清华大学土木系博士后流动站工作,随后至石家庄铁道大学工作至今。目前主要研究领域为结构韧性提升技术、结构振动控制,主持国家自然科学基金1项、国家重点研发计划项目子课题2项、河北省自然科学基金1项,系河北省自然科学基金创新研究群体成员,发表SCI/EI收录论文20余篇,获发明专利授权4项。
引用本文:    
康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹混凝土的抗硫酸盐侵蚀和抗冻性能[J]. 材料导报, 2024, 38(22): 22100093-7.
KANG Yingjie, GUO Zili, YE Binbin, PAN Peng. Sulfate Corrosion and Frost Resistances of Concrete Confined with Engineered Cementitious Composites(ECC). Materials Reports, 2024, 38(22): 22100093-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100093  或          http://www.mater-rep.com/CN/Y2024/V38/I22/22100093
1 Liu X,Liu W Q,Wang S G,et al.Materials Reports,2014,28(7),89(in Chinese).
刘鑫,刘伟庆,王曙光,等.材料导报,2014,28(7),89.
2 Li X F.Anti-frost design method and preventive measures for concrete structure in the Qinghai-Tibet plateau.Ph.D.Thesis,Southeast University,China,2015(in Chinese).
李雪峰.青藏高原地区混凝土抗冻设计及预防措施研究.博士学位论文,东南大学,2015.
3 Jiang W Q,Liu Q F.Journal of The Chinese Ceramic Society,2020,48(2),258(in Chinese).
姜文镪,刘清风.硅酸盐学报,2020,48(2),258.
4 Zhang X P,Zhang R L,Yang B,et al.Materials Reports,2024,38(5),22080059(in Chinese).
张学鹏,张戎令,杨斌,等.材料导报,2024,38(5),22080059.
5 Yang Y G,Zhang Y S,She W,et al.Journal of Building Materials,2017,20(5),705(in Chinese).
杨永敢,张云升,佘伟,等.建筑材料学报,2017,20(5),705.
6 Chen Z Y,Cui J H,Zhu J Q,et al.Engineering Mechanics,2006,23(S1),86(in Chinese).
陈肇元,崔京浩,朱金铨,等.工程力学,2006,23(S1),86.
7 Xu S L,Li H D.China Civil Engineering Journal,2008,41(6),45(in Chinese).
徐世烺,李贺东.土木工程学报,2008,41(6),45.
8 Jiang S Y,Gong H W,Yao W L,et al.Materials Reports,2018,32(23),4192(in Chinese).
江世永,龚宏伟,姚未来,等.材料导报,2018,32(23),4192.
9 Kan L L,Gong Y W,Wang J R.Journal of Building Materials,2019,22(2),192(in Chinese).
阚黎黎,龚雅文,王靖荣.建筑材料学报,2019,22(2),192.
10 Wang Z B,Zhang J,Wang Q.Journal of Building Materials,2018,21(2),216(in Chinese).
王振波,张君,王庆.建筑材料学报,2018,21(2),216.
11 Ma H Q,Y Cheng Y,Chao W.Construction and Building Materials,2021,287,122719.
12 Liu H Z,Zhang Q,Li V,et al.Construction and Building Materials,2017,133,171.
13 Fei X P,Guo L P,Bian R S,et al.Construction and Building Materials,2023,385,131509.
14 Han Y D,Liu C,Wang Z B,et al.Journal of Building Materials,2020,23(4),846(in Chinese).
韩宇栋,刘畅,王振波,等.建筑材料学报,2020,23(4),846.
15 Wang ZB,Sun P,Liu W K,et al.Journal of Huazhong University of Science and Technology(Natural Science Edition),2021,49(7),31(in Chinese).
王振波,孙鹏,刘伟康,等.华中科技大学学报(自然科学版),2021,49(7),31.
16 Wang F,Kan L L,Yu J T,et al.Construction and Building Materials,2023,388,131580.
17 Jin H S,Li F H,He X Y F,et al.Materials Reports,2020,34(8),08071(in Chinese).
靳贺松,李福海,何肖云峰,等.材料导报,2020,34(8),08071.
18 Xu S L,Cai X H,Li H D.China Civil Engineering Journal,2009,42(9),42(in Chinese).
徐世烺,蔡新华,李贺东.土木工程学报,2009,42(9),42.
19 Fan J S,Liu R R,Zhang J,et al.China Civil Engineering Journal,2021,54(4),54(in Chinese).
樊健生,刘入瑞,张君,等.土木工程学报,2021,54(4),54.
20 Li F H,Feng Z H,Deng K L,et al.Engineering Structures,2019,195,223.
21 Wang X L,Zhao Y K,Wang L C,et al.Journal of Building Materials, 2023,26(1),29(in Chinese).
王新玲,赵要康,王利超,等.建筑材料学报,2023,26(1),29.
22 Du W P,Yang C T,Wang C.Materials Reports,2021,35(4),04067(in Chinese).
杜文平,杨才千,王冲.材料导报,2021,35(4),04067.
23 Ye B B,Han J G,Pan P,et al.Acta Materiae Compositae Sinica,2019,36(1),245(in Chinese).
叶斌斌,韩建国,潘鹏,等.复合材料学报,2019,36(1),245.
24 Ye B B,Zhang Y T,Han J G,et al.Construction and Building Materials,2019,226,899.
25 Zhang C L,Liu Q F.Materials Reports,2022,36(1),20100075(in Chinese).
张成琳,刘清风.材料导报,2022,36(1),20100075.
26 Li L J,Liu Q F.Journal of the Chinese Ceramic Society,2022,50(8),2245(in Chinese).
李林洁,刘清风.硅酸盐学报,2022,50(8),2245.
27 Zhang C L,Chen W K,Mu S,et al.Construction and Building Materials,2021,285,122806.
28 Du P.Freeze-thaw damage model and service life prediction of concrete under multi-factor coupling.Ph.D.Thesis,China Building Materials Academy,China,2014(in Chinese).
杜鹏.多因素耦合作用下混凝土的冻融损伤模型与寿命预测.博士学位论文,中国建筑材料科学研究总院,2014.
29 Huang Z,Xing F,Xing Y Y,et al.Concrete,2008(8),45(in Chinese).
黄战,邢锋,邢媛媛,等.混凝土,2008(8),45.
30 Jin Z Q.Durability and service life prediction of concrete exposed to harsh environment in west of China.Ph.D.Thesis,Southeast University,China,2006(in Chinese).
金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测.博士学位论文,东南大学,2006.
31 Li J Y,Peng X P,Deng Z G,et al.Concrete,2000(12),61(in Chinese).
李金玉,彭小平,邓正刚,等.混凝土,2000(12),61.
32 Xiao Q H,Niu D T,Zhu W P.Building Structure,2011,41(S),203(in Chinese).
肖前慧,牛荻涛,朱文凭.建筑结构,2011,41(S),203.
33 Xiao Q H,Cao Z Y,Zhu W P.Bulletin of the Chinese ceramic society,2020,39(2),352(in Chinese).
肖前慧,曹志远,关虓,等.硅酸盐通报,2020,39(2),352.
[1] 王习, 张云升, 张宇, 乔宏霞, 路承功, Hakuzweyezu Theogene, 刘志超, 李忠慧. CTF增效剂提升混凝土抗冻性能研究[J]. 材料导报, 2024, 38(19): 23030006-7.
[2] 戈雪良, 柯敏勇, 刘伟宝, 陆采荣, 王珩, 梅国兴, 杨虎. 混凝土冻融作用下冻结应力演化规律及对抗冻性能的影响[J]. 材料导报, 2024, 38(12): 22070144-5.
[3] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[4] 于本田, 杨玉祥, 刘江, 王永刚, 王朋勇, 谢超. 改性SiO2气凝胶水泥基复合砂浆性能及冻融损伤研究[J]. 材料导报, 2023, 37(23): 22040197-6.
[5] 何松松, 焦楚杰, 欧旭. 高强抗冻透水混凝土的配合比设计与性能评估[J]. 材料导报, 2023, 37(21): 23070257-7.
[6] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[7] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[8] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[9] 朱红光, 霍青杰, 倪亚东, 许校男, 杭泽涛, 王涛, 杨赛. 煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J]. 材料导报, 2021, 35(22): 22085-22091.
[10] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[11] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[12] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[13] 李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
[14] 莫宗云, 高小建. 偏高岭土改性混凝土的耐久性研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 115-119.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed