Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23080150-6    https://doi.org/10.11896/cldb.23080150
  无机非金属及其复合材料 |
CeO2光催化原理及改性研究进展
莫日格吉乐1, 包莫日根1, 白璐1, 谢兵3, 于晓丽4, 曹鸿璋4, 赵丹蕾5, 赵斯琴1,2,*
1 内蒙古师范大学化学与环境科学学院,呼和浩特 010022
2 内蒙古自治区环境化学重点实验室,呼和浩特 010022
3 中国北方稀土(集团)高科技股份有限公司,内蒙古 包头 014010
4 白云鄂博稀土资源研究与综合利用全国重点实验室,内蒙古 包头 014060
5 内蒙古大学化学化工学院,呼和浩特 010022
Research Progress on the Principle and Modification of CeO2 Photocatalysis
LIU Morigejile1, BAO Morigen1, BAI Lu1, XIE Bing3, YU Xiaoli4, CAO Hongzhang4, ZHAO Danlei5, ZHAO Siqin1,2,*
1 School of Chemistry and Environmental Sciences, Inner Mongolia Normal University, Hohhot 010022, China
2 Inner Mongolia Autonomous Region Key Laboratory of Environmental Chemistry, Hohhot 010022, China
3 China North Rare Earth (Group) High Tech Co., Ltd., Baotou 014010, Inner Mongolia, China
4 National Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou 014060, Inner Mongolia, China
5 College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010022, China
下载:  全 文 ( PDF ) ( 5967KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光催化技术是一种新兴的环境保护技术,可用于处理水和空气中的有机和无机污染物。CeO2光催化剂由于其高稳定性和强光吸收能力而备受关注。但是CeO2对自然可见光的吸收很弱,光生电子反应受限,在光催化中不能直接利用可见光促进电荷分离,这限制了催化活性和效率。本文主要从CeO2自身的基本性能、结构和基本原理出发,综述了通过负载、掺杂及半导体复合等方法改性CeO2光催化剂的研究进展,并展望了这一领域的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
莫日格吉乐
包莫日根
白璐
谢兵
于晓丽
曹鸿璋
赵丹蕾
赵斯琴
关键词:  CeO2  光催化  改性  负载  掺杂  半导体复合    
Abstract: Photocatalytic technology is an emerging environmental protection technology that can be used to treat organic and inorganic pollutants in water and air. CeO2 photocatalysts have attracted much attention due to their high stability and strong light-absorption. However pure CeO2 can absorb only a quite small part of natural visible light, restraining its photo-induced electron generation reaction. In photocatalysis conditions, CeO2 cannot directly utilize visible light to promote charge separation, thereby limiting its catalytic activity and efficiency. Starting from the basic properties, structure, and principles of CeO2, this review summarizes the modification of CeO2 using methods such as loading, doping, and semiconductor hybridization, and discusses the future development prospect of this field.
Key words:  cerium oxide    photocatalysis    modification    load    doping    semiconductor hybridization
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  O616  
基金资助: 国家自然科学基金(22266025);内蒙古自然科学联合基金项目(2022LHMS02001);内蒙古师范大学基本科研业务费专项(2022JBTD009);北方稀土项目(课题)技术开发基金(2022H2490)
通讯作者:  *赵斯琴,内蒙古师范大学化学与环境科学学院教授、博士研究生导师。1995年内蒙古师范大学化学系化学专业本科毕业,2001年内蒙古师范大学化学专业硕士毕业后到内蒙古师范大学工作至今,2010年北京科技大学化学专业博士毕业。目前主要从事TiO2纳米材料的改性制备及污水处理研究、稀土光催化剂的反应机理研究。发表论文100余篇,包括Applied Catalysis B: Environmental、Ceramics International、Macromolecular Research等。Zhaosq@imnu.edu.cn   
作者简介:  莫日格吉乐,2021年6月于内蒙古师范大学获得理学学士学位。现为内蒙古师范大学化学与环境科学学院博士研究生,在赵斯琴教授的指导下进行研究。目前主要研究领域为无机纳米材料。
引用本文:    
莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
LIU Morigejile, BAO Morigen, BAI Lu, XIE Bing, YU Xiaoli, CAO Hongzhang, ZHAO Danlei, ZHAO Siqin. Research Progress on the Principle and Modification of CeO2 Photocatalysis. Materials Reports, 2024, 38(21): 23080150-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080150  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23080150
1 Pan J,Shen S, Zhou W, et al. Acta Physico-Chimica Sinica, 2020, 36(3), 1905068.
2 Lv S W, Cong Y, Chen X, et al. Chemical Engineering Journal, 2022, 433, 133605.
3 Cao Y D, Liu C B, Chen F, et al. Materials Reports, 2023, 37(3), 21070275 (in Chinese).
曹一达, 刘成宝, 陈丰, 等. 材料导报, 2023, 37(3), 21070275.
4 Shui B Y, Song X S, Fan W J. Chemical Industry and Engineering Progress, 2021, 40(S2), 356 (in Chinese).
水博阳, 宋小三, 范文江. 化工进展, 2021, 40(S2), 356.
5 Xu J, Song S Y, Zhang H J. Chemistry Education, 2019, 40 (8), 1 (in Chinese).
徐晶, 宋术岩, 张洪杰. 化学教育, 2019, 40(8), 1.
6 Nemiwal M, Sillanpää M, Banat F, et al. Inorganic Chemistry Communications, 2022, 143, 109739.
7 Saravanakumar K, Muthupoongodi S, Muthuraj V. Journal of Rare Earths, 2019, 37(8), 853.
8 Liu G, Wang H, Chen D, et al. Separation and Purification Technology, 2020, 237, 116329.
9 Castañeda C, Gutiérrez K, Alvarado I, et al. Journal of Chemical Technology & Biotechnology, 2020, 95(12), 3213.
10 Hao Y, Chen S, Wu L, et al. Journal of Alloys and Compounds, 2021, 867, 159030.
11 Yang D. Preparation andphotocatalytic performance of defective mesoporous cerium dioxide microspheres and their composites Master's Thesis, Heilongjiang University, China, 2022 (in Chinese).
杨德才. 缺陷型介孔二氧化铈微球及其复合体的制备与光催化性能研究. 硕士学位论文, 黑龙江大学, 2022.
12 Ranjith K S, Saravanan P, Chen S H, et al. The Journal of Physical Chemistry C, 2014, 118(46), 27039.
13 Bahadoran A, Ramakrishna S, Masudy-Panah S, et al. Applied Surface Science, 2021, 568, 150957.
14 Liu F. Preparation andphotocatalytic redox performance of modified cerium dioxide based composite nanomaterials. Master's thesis, Xiamen University, China, 2019 (in Chinese).
刘芳. 改性二氧化铈基复合纳米材料的制备及其光催化氧化还原性能研究. 硕士学位论文, 厦门大学, 2019.
15 Ren X N. Study on the surface active sites and synergistic catalysis of cerium dioxide. Master's Thesis, Dalian University of Technology, China, 2019 (in Chinese).
任晓宁. 二氧化铈表面活性位点及其协同催化研究. 硕士学位论文, 大连理工大学, 2019.
16 Ma W,Mashimo T, Tamura S, et al. Ceramics International, 2020, 46(17), 26502.
17 Sakthivel T S, Reid D L, Bhatta U M, et al. Nanoscale, 2015, 7(12), 5169.
18 Wu L,Wiesmann H J, Moodenbaugh A R, et al. Physical Review B, 2004, 69(12), 125415.
19 Jiang F, Wang S, Liu B, et al. ACS Catalysis, 2020, 10(19), 11493.
20 Atla S B, Wu M N, Pan W, et al. Materials Characterization, 2014, 98, 202.
21 Hezam A, Namratha K, Drmosh Q A, et al. ACS Applied Nano Materials, 2019, 3(1), 138.
22 Zhang S,Tian Z, Ma Y, et al. ACS Catalysis, 2023, 13(7), 4629.
23 Guan J R. Construction of CeO2-C3N4 composite photocatalytic material and study on photocatalytic conversion of CO2. Master’s Thesis, Jiangsu University, China, 2019 (in Chinese).
关静茹. CeO2-C3N4复合光催化材料的构筑及光催化转化CO2研究. 硕士学位论文, 江苏大学, 2019.
24 Liu Y, Lin Y R, Qin P Y, et al. Journal of Shenyang Normal University (Natural Science Edition), 2021, 39 (4), 289 (in Chinese).
刘颖, 林雨冉, 覃佩怡, 等.沈阳师范大学学报(自然科学版), 2021, 39(4), 289.
25 Lu X, Li X,Qian J, et al. Journal of Alloys and Compounds, 2016, 661, 363.
26 Kusmierek E. Catalysts, 2020, 10(12), 1435.
27 Yin D, Zhao F, Zhang L, et al. RSC Advances, 2016, 6(105), 103795.
28 Fauzi A A, Jalil A A, Hassan N S, et al. Chemosphere, 2022, 286, 131651.
29 Liu W Q. Study on the synthesis of cerium dioxide with different morpho-logies and the performance of its compositephotocatalyst. Master’s Thesis, Beijing University of Chemical Technology, China, 2019 (in Chinese).
刘文琦. 不同形貌二氧化铈的合成及其复合光催化剂的性能研究. 硕士学位论文, 北京化工大学, 2021.
30 Li Q Y, Xiao L J, Li W Z. New Chemical Materials, 2021, 49(12), 280 (in Chinese).
李巧云, 肖林久, 李文泽. 化工新型材料, 2021, 49(12), 280.
31 Kulal N, Vetrivel R, Ganesh Krishna N S, et al. ACS Applied Nano Materials, 2021, 4(5), 4388.
32 Yang Z X,Luo G X, Lu Z S, et al. The Journal of Chemical Physics, 2007, 127,074704.
33 Cao F X, Song Z Y, Zhang Z M, et al. ACS Applied Materials & Interfaces, 2021, 13(21), 24957.
34 Chen H R,Rong W H, Huang Z C, et al. The Journal of Chemical Phy-sics, 2019, 151, 184703.
35 Pelli Cresi J S, Silvagni E, Bertoni G, et al. The Journal of Chemical Physics, 2020, 152, 114704 .
36 Kettner M, Duchoň T, Wolf M J, et al. The Journal of Chemical Physics, 2019, 151, 044701.
37 van Dao D, Jung H D, Nguyen T T D, et al. Journal of Materials Chemistry A, 2021, 9(16), 10217.
38 Yang S Y, Wang Q, Zhang J S, et al. Journal of Guizhou Normal University (Natural Science Edition), 2023, 41 (1), 87 (in Chinese).
杨绍艳, 王芹, 张俊山, 等. 贵州师范大学学报(自然科学版), 2023, 41(1), 87.
39 Gu K, Liu Y J, Zhao J G, et al. Carbon Techniques, 2022, 41 (6), 18 (in Chinese).
谷可, 刘雅娟, 赵建国, 等.炭素技术, 2022, 41(6), 18.
40 Xu B, Yang H, Zhang Q, et al. ChemCatChem, 2020, 12(9), 2638.
41 Adler S B, Smith J W, Reimer J A. The Journal of Chemical Physics, 1993, 98(9), 7613.
42 Yuan K, Zhang Y W. Journal of the Chinese Society of Rare Earths, 2020, 38(3), 326 (in Chinese).
袁堃, 张亚文. 中国稀土学报, 2020, 38(3), 326.
43 Yildirim S, Akalin S A, Oguzlar S, et al. Journal of Materials Science: Materials in Electronics, 2019, 30, 13749.
44 Pumera M. Materials Today, 2011, 14(7-8), 308.
45 Lu K Q,Xin X, Zhang N, et al. Journal of Materials Chemistry A, 2018, 6(11), 4590.
46 Sun F L, Zhang W, Yu Y F, et al. Materials Reports, 2023, 37 (3), 22120058(in Chinese).
孙富丽, 张炜, 俞一帆, 等. 材料导报, 2023, 37(3), 22120058.
47 Ha H, Yoon S,An K, et al. ACS Catalysis, 2018, 8(12), 11491.
48 Kye S H, Park H S, Zhang R, et al. The Journal of Chemical Physics, 2020, 152, 054715.
49 Hu C, Jing K Q, Lin X Q, et al. Catalysis Letters, 2022, 152(2), 503.
50 Kalita L, Sonowal K, Basyach P, et al. ACS Omega, 2023, 8(13), 11768.
51 Chen J, Pham H N, Mon T, et al. ACS Applied Nano Materials, 2023, 6(6), 4544.
52 Cai J, Li D, Jiang L, et al. Energy & Fuels, 2023, 37(7), 4878.
53 Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. ACS Applied Materials & Interfaces, 2012, 4(7), 3718.
[1] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[2] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[3] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[4] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[5] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[6] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[7] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[8] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[9] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[10] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[11] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[12] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[13] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[14] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[15] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed