Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23040167-7    https://doi.org/10.11896/cldb.23040167
  高分子与聚合物基复合材料 |
聚氨酯改性聚羧酸盐的合成及与水泥净浆的相互作用
向顺成1, 郑廷祥1, 高英力1,*, 史威2, 蒋震3, 何彦琪3, 曾维3
1 长沙理工大学交通运输工程学院,长沙 410082
2 湖南省科学技术事务中心,长沙 410082
3 中建西部建设湖南有限公司,长沙 410082
Synthesis of Polyurethane Modified Polycarboxylate and Its Interaction with Cement Paste
XIANG Shuncheng1, ZHENG Tingxiang1, GAO Yingli1,*, SHI Wei2, JIANG Zhen3, HE Yanqi3, ZENG Wei3
1 School of Traffic & Transportation Engineering, Changsha University of Science & Technology, Changsha 410082, China
2 Hunan Provincial Science and Technology Affairs Center, Changsha 410082, China
3 China West Construction Group Co., Ltd. Hunan Branch, Changsha 410082, China
下载:  全 文 ( PDF ) ( 3613KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过正交实验设计获得了最佳制备工艺,采用自由基聚合方式合成了主链聚合度基本相同、侧链长度和官能团不同的梳状聚羧酸盐(M-PCE和O-PCE),将其与两种商用聚羧酸盐(C-PCE-1和C-PCE-2)进行比较,通过分析不同聚羧酸盐与硅酸盐水泥的吸附行为、流动性、Zeta电位和液面表面张力,探究了聚氨酯改性聚羧酸盐(M-PCE)与水泥净浆的相互作用关系。结果表明,由于硅氧烷基团的水解不完全,M-PCE促进了水泥基材料中水泥的水化作用;其他三种聚羧酸盐(O-PCE、C-PCE-1和C-PCE-2)由于其链烷基的屏蔽效应而延迟水化;同时,附带硅氧烷基团的M-PCE具有较高的Zeta电位绝对值,使水泥混凝土具有优异的表面张力和流动性,即聚氨酯侧链的接入对聚羧酸在水泥净浆中的各项性能有显著的积极影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
向顺成
郑廷祥
高英力
史威
蒋震
何彦琪
曾维
关键词:  聚羧酸减水剂  聚氨酯改性  水泥净浆    
Abstract: The optimum preparation process was obtained by orthogonal experimental design. Comb-like polycarboxylates (M-PCE and O-PCE) with the same degree of polymerization of main chain and different side chain length and functional groups were synthesized by free radical polymerization. They were compared with two commercial polycarboxylates (C-PCE-1 and C-PCE-2). The adsorption behavior, fluidity, Zeta potential and surface tension of different polycarboxylates and Portland cement were analyzed, the interaction between polyurethane modified polycarboxylate (M-PCE) and cement paste was investigated. The results show that due to the incomplete hydrolysis of the siloxane group, the role of M-PCE in cement-based materials can promote cement hydration, and the other three polycarboxylates (O-PCE, C-PCE-1 and C-PCE-2) can delay the hydration due to the shielding effect of their chain alkyl. At the same time, it is found that M-PCE with siloxane group has a high Zeta potential absolute value, which can make cement concrete have excellent surface tension and fluidity, that is, the access of polyurethane side chain has a significant positive impact on the performance of polycarboxylic acid in cement paste.
Key words:  polycarboxylic acid water reducer    polyurethane modification    cement paste
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TQ172  
基金资助: 国家自然科学基金(52209154;52278239);湖南省“三尖”创新人才工程-“荷尖”人才项目 (2022RC1175);教育部“春晖计划”合作科研项目 (HZKY20220358);湖南省科技厅重点研发计划项目 (2021SK2044);湖南省自然科学基金 (2022JJ30042;2023JJ30040);湖南省研究生创新项目(CX20220869)
通讯作者:  *高英力,长沙理工大学交通运输工程学院教授、博士研究生导师,主要研究方向包括:①道路工程新材料的研发及应用;②高性能水泥混凝土及沥青混合料的研究及应用;③“双碳”政策下的工业固体废弃物综合利用;④地下工程隧道衬砌结构的设计、开发、研究与应用;⑤混凝土用高性能化学外加剂研究及应用等。yingligao@126.com   
作者简介:  向顺成,工学博士,长沙理工大学副教授,2010年于南昌航空大学获得学士学位,2012年于南昌航空大学获得硕士学位,2018年于湖南大学获得博士学位,主要研究方向为道路结构新材料的研发及应用、公路路面高性能水泥混凝土和沥青混凝土的研究及应用、混凝土用高性能外加剂的研究及应用等。获国家自然科学基金一项、省部级项目5项、中国公路学会自然科学二等奖等诸多奖励。以第一作者发表SCI论文10篇,出版专著一部。
引用本文:    
向顺成, 郑廷祥, 高英力, 史威, 蒋震, 何彦琪, 曾维. 聚氨酯改性聚羧酸盐的合成及与水泥净浆的相互作用[J]. 材料导报, 2024, 38(21): 23040167-7.
XIANG Shuncheng, ZHENG Tingxiang, GAO Yingli, SHI Wei, JIANG Zhen, HE Yanqi, ZENG Wei. Synthesis of Polyurethane Modified Polycarboxylate and Its Interaction with Cement Paste. Materials Reports, 2024, 38(21): 23040167-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040167  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23040167
1 Lei L, Hirata T, Plank J. Cement and Concrete Research, 2022, 157, 106826.
2 Wen X D, Feng L, Hu D Y, et al. Construction and Building Materials, 2019, 211, 26.
3 Yu B B, Zeng Z, Ren Q Y, et al. Journal of Molecular Structure, 2016, 1120, 171.
4 Liu X, Wang Z M, Zhu J, et al. Colloids and Surfaces A: Physicochemical and Engineering, 2014, 448, 119.
5 Plank J, Li H Q, Ilg M, et al. Cement and Concrete Research, 2016, 84, 20.
6 Lange A, Plank J. Cement and Concrete Research, 2016, 79, 131.
7 Feng H, Feng Z, Wang W, et al. Construction and Building Materials, 2021, 292, 123285.
8 Yang Y, Ran Q P, Liu J P, et al. New Building Materials, 2011, 7, 54.
9 He Y, Zhang X, Hooton R D. Construction and Building Materials, 2017, 132, 112.
10 Gao Y L, Duan K R, Xiang S C, et al. Frontiers in Materials, 2021, 8, 751585.
11 Borget P, Galmiche L, Le M. Colloids and Surfaces A: Physicochemical and Engineering, 2005, 3, 173.
12 Wang B, Wang L. Journal of Building Materials, 2003, 6(1), 90.
13 Xiang S C, Tan Y S, Gao Y L. Frontiers in Material, 2021, 9, 1.
14 Xiang S C, Gao Y L. Journal of Applied Polymer Science, 2021, 138(6), 1.
15 Švegl F, Šuput-Strupi J, Škrlep L, et al. Cement and Concrete Research, 2008, 38, 945.
16 Xiang S C, Shi C J, Zhang H L. Journal of Applied Polymer Science, 2018, 135(7), 45873.
17 Kong F R, Pan L S, Wang C M, et al. Construction and Building Mate-rials, 2016, 105, 545.
18 Luo Y, Wang X, Wei C, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(6), 10(in Chinese).
罗毅, 王鑫, 卫超, 等. 硅酸盐通报, 2020, 39(6), 10.
19 Kong X M, Liu H, Lu Z B, et al. Cement and Concrete Research, 2015, 67, 168.
20 Scrivener K L, Nonat A. Cement and Concrete Research, 2011, 41, 651.
21 Ylmén R, Jäglid U, Steenari B M, et al. Cement and Concrete Research, 2009, 39(5), 433.
22 Ylmén R, Wadsö L, Panas I. Cement and Concrete Research, 2010, 40(10), 1541.
23 Li Y W, Yang C L, Zhang Y F, et al. Construction and Building Mate-rials, 2014, 64, 324.
24 Ouyang X W, Xu S D, Ma Y W, et al. Journal of the Chinese Ceramic Society, 2021,49(5), 972(in Chinese).
欧阳小伟, 许世达, 马玉玮, 等. 硅酸盐学报, 2021, 49(5), 972.
25 Zhang Y, Kong X. Cement and Concrete Research, 2015, 69, 1.
26 Plank J, Hirsch C. Cement and Concrete Research, 2007, 37(4), 537.
27 Fan W, Stoffelbach F, Rieger J, et al. Cement and Concrete Research, 2012, 42(1), 166.
28 Ge H S, Sun Z P, Yang H J, et al. Journal of the Chinese Ceramic Society, 2023, 51(5), 1293(in Chinese).
葛好升, 孙振平, 杨海静, 等. 硅酸盐学报, 2023, 51(5), 1293.
[1] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[2] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[3] 戴民, 李姝蓉, 赵明宇. 基于流变模型的降黏型聚羧酸减水剂的试验研究[J]. 材料导报, 2023, 37(17): 22030273-5.
[4] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[5] 单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
[6] 陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构(英文)[J]. 材料导报, 2022, 36(12): 20100140-9.
[7] 刘玲, 衣军勇, 肖刚, 方伟, 崔景亮, 田洪雷, 赵曰琦. 蒙脱土对聚羧酸减水剂的吸附行为研究[J]. 材料导报, 2021, 35(z2): 158-162.
[8] 潘阳, 汪源, 汪苏平, 胡志豪, 李正平, 张满, 张云. 高保坍型聚羧酸减水剂的制备及其在水溶液中的自组装行为[J]. 材料导报, 2021, 35(z2): 167-171.
[9] 文轩, 胡志豪, 汪苏平, 张云, 汪源. 交联型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2021, 35(z2): 172-175.
[10] 周文娟, 段佳豪, 谢谦, 王华萍. 抗泥型聚羧酸减水剂研究与应用现状[J]. 材料导报, 2021, 35(Z1): 650-653.
[11] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[12] 伍勇华, 祝婷, 党梓轩, 李莹, 李国新. 中和与否对聚羧酸减水剂性能的影响及机理分析[J]. 材料导报, 2020, 34(Z1): 592-595.
[13] 纪宪坤, 汪源, 汪苏平, 胡志豪. 酯化改性抗泥型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2020, 34(Z1): 596-600.
[14] 白静静, 王敏, 史才军, 沙胜男, 向顺成, 周贝贝, 马一菡. 降粘性聚羧酸减水剂的设计合成及在低水胶比水泥-硅灰体系中的作用[J]. 材料导报, 2020, 34(6): 6172-6179.
[15] 汪源, 汪苏平, 张亚利, 纪宪坤. 降粘型聚羧酸减水剂的制备及性能[J]. 材料导报, 2019, 33(Z2): 646-650.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed