Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23040237-5    https://doi.org/10.11896/cldb.23040237
  无机非金属及其复合材料 |
低水胶比水泥浆体静动态流变行为的经时变化
陈翠翠1,2, 张倩倩1,2,*, 杨勇3, 舒鑫1,2, 冉千平3
1 高性能土木工程材料国家重点实验室,南京 211103
2 江苏苏博特新材料股份有限公司,南京 211103
3 东南大学材料科学与工程学院,南京 210096
Time-dependent Static and Dynamic Rheological Behavior of Cement Paste with Low Water-Cement Ratio
CHEN Cuicui1,2, ZHANG Qianqian1,2,*, YANG Yong3, SHU Xin1,2, RAN Qianping3
1 State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 211103, China
2 Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
3 School of Materials Science and Engineering, Southeast University, Nanjing 210096, China
下载:  全 文 ( PDF ) ( 4511KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于浆体流动度、静态屈服应力以及小振幅振荡模式下储能模量,研究不同水胶比以及减水剂用量对浆体静动态流变行为经时变化的影响机制,探讨低水胶比浆体的静动态流变行为。研究结果表明:通过调整减水剂用量获得的初始流动度相同但水胶比不同的浆体,流动性经时变化存在显著的差异。极低水胶比浆体的流动性经时损失更为显著;但高减水剂用量时,浆体的流动性经时损失较小。基于静态屈服应力和储能模量G′表征了浆体静态流变行为的发展,发现颗粒胶体作用力和水化产物的桥接作用共同决定了浆体微观结构强度发展。低水胶比浆体的静态屈服应力和储能模量随时间延长增长更加显著。增加减水剂用量,可增大颗粒间距,抑制早期水化,有利于延缓颗粒网络强度发展。影响静动态流变行为内在机制的不同导致了浆体的静动态性能经时变化存在显著差异,其中水化产物的桥接作用是关键因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈翠翠
张倩倩
杨勇
舒鑫
冉千平
关键词:  水泥浆体  低水胶比  动态屈服应力  静态屈服应力  储能模量    
Abstract: Based on the flow spread, static yield stress, and small amplitude oscillatory shear test, the influence of water-cement ratio and the dosage of superplasticizer on the time-dependent rheological behavior of cement paste was studied, and the rheological behavior of cement paste with low water-cement ratio was discussed. The results show that there were significant differences in the time-dependent flow behavior of paste with the same initial flow spread but different superplasticizer dosage. The loss of fluidity over time of paste with an extremely low water-cement ratio was more significant, but could be largely reduced as more superplasticizer was added. Based on static yield stress and the storage modulus G’, the evolution of the static rheological behavior of paste could be characterized. It was found that the colloidal surface interactions and the bridging effect of the hydration product determine the strength development of particle network. The static yield stress and storage modulus paste with low water-cement ratio increase significantly with time. Increasing the dosage of superplasticizer could increase the particle spacing, and inhibit the early hydration of cement, which was helpful to delay the development of particle network. It is believed that the differences in the underlying mechanism that affect static and dynamic rheological behavior lead to different evolution of static and dynamic rheological behavior with time, in which the bridging effect of hydration products is a key factor.
Key words:  cement paste    low water-cement ratio    dynamic yield stress    static yield stress    storage modulus
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TU528  
基金资助: 国家重点研发计划项目(2021YFB2601002);江苏省自然科学基金(BK20201075)
通讯作者:  * 张倩倩,江苏苏博特新材料股份有限公司,高级工程师。2010年6月毕业于东南大学,获得硕士学位。同年加入江苏苏博特新材料股份有限公司工作至今,主要从事混凝土流变性能研究。发表学术论文30余篇,获授权发明专利10余件。zhangqianqian@cnjsjk.cn   
作者简介:  陈翠翠,江苏苏博特新材料股份有限公司,高级工程师。2009年6月毕业于东南大学,获得硕士学位。同年加入江苏苏博特新材料股份有限公司工作至今,主要从事土木工程材料的研究、开发与应用工作。发表论文20余篇,授权国家发明专利10件。
引用本文:    
陈翠翠, 张倩倩, 杨勇, 舒鑫, 冉千平. 低水胶比水泥浆体静动态流变行为的经时变化[J]. 材料导报, 2024, 38(15): 23040237-5.
CHEN Cuicui, ZHANG Qianqian, YANG Yong, SHU Xin, RAN Qianping. Time-dependent Static and Dynamic Rheological Behavior of Cement Paste with Low Water-Cement Ratio. Materials Reports, 2024, 38(15): 23040237-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040237  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23040237
1 Lowke D, Kränkel T, Gehlen C, et al. Design, production and placement of self-consolidating concrete, Springer, Dordrecht, 2010, pp.91.
2 Mahaut F, Mokeddem S, Chateau X, et al. Cement and concrete research, 2008, 38(11), 1276.
3 Megid W A, Khayat K H. Construction and Building Materials, 2019, 196, 626.
4 Liu J, Wang K, Zhang Q, et al. Construction and Building Materials, 2017, 149, 359.
5 Wang R, Gao X, Huang H, et al. Construction and Building Materials, 2017, 144, 65.
6 Wang R, Gao X. Applied Sciences, 2016, 6(216), 1.
7 Roussel N, Ovarlez G, Garrault S, et al. Cement and Concrete Research, 2012, 42(1), 148.
8 Mantellato S, Palacios M, Flatt R J. Materials and Structures, 2019, 52(1), 1.
9 Qian Y, Lesage K, El Cheikh K, et al. Cement and Concrete Research, 2018, 107, 75.
10 Mewis J, Wagner N J. Advances in Colloid and Interface Science, 2009, 147, 214.
11 Qian Y, Kawashima S. Cement and Concrete Composites, 2018, 86, 288.
12 Feng H, Feng Z, Wang W, et al. Construction and Building Materials, 2021, 292, 123285.
13 Yuan Q, Zhou D, Khayat K H, et al. Cement and Concrete Research, 2017, 9, 183.
14 Yuan Q, Lu X, Khayat K H, et al. Materials and Structures, 2017, 50, 1.
15 Flatt R J, Larosa D, Roussel N. Cement and Concrete Research, 2006, 36(1), 99.
16 Roussel N, Coussot P. Journal of Rheology, 2005, 49(3), 705.
17 Flatt R J, Bowen P. Journal of the American Ceramic Society, 2006, 89(4), 1244.
18 Flatt R J, Bowen P. Journal of the American Ceramic Society, 2010, 90(4), 1038.
19 Zhang Q, Shu X, Yu X, et al. Construction and Building Materials, 2020, 242, 117984.
20 Mantellato S, Palacios M, Flatt R J. Cement and Concrete Research, 2015, 67, 286.
21 Li Z, Wang D. Bulletin of The Chinese Ceramic Society, 2017, 36(6), 1818(in Chinese).
李振, 王大福. 硅酸盐通报, 2017, 36(6), 1818.
22 Struble L J, Lei W G. Advanced Cement Based Materials, 1995, 2(6), 224.
[1] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[2] 张弛, 李克非, 王俊杰. 水泥净浆非碳化区与脱钙碳化区的微观力学表征[J]. 材料导报, 2023, 37(2): 20110098-8.
[3] 白静静, 王敏, 史才军, 沙胜男, 向顺成, 周贝贝, 马一菡. 降粘性聚羧酸减水剂的设计合成及在低水胶比水泥-硅灰体系中的作用[J]. 材料导报, 2020, 34(6): 6172-6179.
[4] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[5] 李保亮, 尤南乔, 曹瑞林, 霍彬彬, 陈春, 张亚梅. 锂渣粉的组成及在水泥浆体中的物理与化学反应特性[J]. 材料导报, 2020, 34(10): 10046-10051.
[6] 陈超, 孙振平. 硅灰对掺有无碱速凝剂水泥浆体性能的影响[J]. 材料导报, 2019, 33(14): 2348-2353.
[7] 魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
[8] 周雪艳, 马骉, 魏堃, 薄延震. 形状记忆氢化双酚A型环氧树脂的制备与性能[J]. 材料导报, 2018, 32(18): 3271-3275.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed