Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23030069-7    https://doi.org/10.11896/cldb.23030069
  无机非金属及其复合材料 |
基于表面能理论的粘结剂-UHPC粘结失效模式分析
李嘉1,2,*, 肖鹏1, 范思源1, 周壹伍1
1 湖南大学土木工程学院,长沙 410082
2 湖南大学风工程与桥梁工程湖南省重点实验室,长沙 410082
Failure Mode Analysis of Binders-UHPC Based on Surface Energy Theory
LI Jia1,2,*, XIAO Peng1, FAN Siyuan1, ZHOU Yiwu1
1 College of Civil Engineering, Hunan University, Changsha 410082, China
2 Key Laboratory for Wind and Bridge Engineering of Hunan Province, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 4236KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究粘结剂与UHPC的潜在粘结失效模式及其机理,通过表面能理论建立粘结剂-UHPC的粘附模型和剥落模型,提出粘结失效模式判断准则。选择四种常用界面粘结剂(热熔型改性环氧树脂202、高粘高弹沥青(宝利)、高粘高弹沥青PG-100和SBS改性沥青)作为研究对象。采用接触角法测算UHPC、粘结材料的表面能参数,并计算粘结剂的内聚功和剥落功、粘结剂-UHPC的界面粘附功和界面剥落功,依据失效模式判断准则确定粘结剂-UHPC体系的粘结失效类型。研究结果表明:四种粘结剂-UHPC的界面粘附功排序为树脂202>高粘沥青>沥青PG-100>SBS改性沥青;粘结剂内聚功排序为树脂202>SBS改性沥青>沥青PG-100>高粘沥青。无水条件下,四种粘结剂-UHPC体系的粘结剂内聚功远小于界面粘附功,为粘结剂内聚失效,粘结剂内聚功与拉拔强度具有较强的线性相关性。有水条件下,粘结剂的剥落功大于界面剥落功,失效类型为粘结剂内聚失效。通过附着力拉拔试验以及已有研究成果,综合分析和验证判定结果的有效性。本研究为探明粘结剂-UHPC粘结失效机理、改进粘结材料配伍性具有理论与实际意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李嘉
肖鹏
范思源
周壹伍
关键词:  超高性能混凝土  粘结剂  表面能  失效模式  粘结性能  改性沥青  改性环氧树脂    
Abstract: To investigate the potential bond mechanism and failure mode between binders and UHPC, the adhesive model and spalling model of binder-UHPC were established through the surface energy theory. The guidelines for determining the bond failure mode were proposed. Four commonly used binders: the hot-melt modified epoxy resin 202, the high-viscoelastic asphalt (Bao Li), the high-viscoelastic asphalt PG-100, and the SBS (styrene butadiene styrene)-modified asphalt were selected as the objects of the study. The contact angle method was used to measure the surface energy parameters of UHPC and the binders. The cohesive work and spalling work of the binders, the interfacial adhesive work and spalling work of the binder-UHPC were calculated. Bond failure types of the binder-UHPC systems were determined according to the failure mode criterion. According to the test results, the interfacial adhesive work of the binder-UHPC systems was ranked as follows: the resin 202>the high viscosity asphalt>the asphalt PG-100>the SBS-modified asphalt. The cohesive work of the binders was ranked as follows: the resin 202>the SBS-modified asphalt>the asphalt PG-100>the high viscosity asphalt. Under the dry condition, the binder cohesive work was much smaller than the interfacial adhesive work of the binder-UHPC systems, indicating the cohesive failure of the binders. There is a strong linear correlation between pull-off strength and binder cohesive work. Under the presence of water, the binder spalling work was larger than the interfacial spalling work, and the failure type is cohesive failure of binder. The validity of the results were analyzed and verified using the pull-off test as well as existing research. This study has theoretical and practical implications for the investigation of binder-UHPC bond failure mechanism and the improvement of the compatibility of binders.
Key words:  ultra-high performance concrete    binder    surface energy    failure mode    bonding property    modified asphalt    modified epoxy resin
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  U443.3  
基金资助: 国家自然科学基金(52038003)
通讯作者:  * 李嘉,湖南大学土木工程学院教授、硕士研究生导师。1982年湖南大学土木系道桥专业本科毕业,1985年湖南大学土木系道桥专业硕士毕业后留校工作至今。长期致力于铺面新材料、新技术研究和绿色低碳交通体系研究。发表论文60余篇,授权专利7项。lijia@hnu.edu.cn   
引用本文:    
李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
LI Jia, XIAO Peng, FAN Siyuan, ZHOU Yiwu. Failure Mode Analysis of Binders-UHPC Based on Surface Energy Theory. Materials Reports, 2024, 38(14): 23030069-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030069  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23030069
1 China Highway and Transportation Society. Technical guideline for super toughness concrete (STC) composite deck structure, China Communications Press, China, 2021 (in Chinese).
中国公路学会. 高韧性混凝土组合桥面结构技术指南,人民交通出版社, 2021.
2 Shao X D, Cao J H, Li J. Design principle and engineering example of steel-stc lightweight composite bridge deck, Science Press, China, 2021, pp. 615 (in Chinese).
邵旭东, 曹君辉, 李嘉.钢-STC轻型组合桥面设计原理与工程实例, 科学出版社, 2021, pp. 615.
3 American Society for Testing and Materials. Standard test method for tensile strength of concrete surface and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (pull-off method), West Conshohocken: ASTM International, 2013.
4 Amit Bhasin, Eyad Masad, Dallas Little, et al. Transportation Research Record, 2006, 1970(1), 2.
5 Li S, Zhang Y, Jiao K. Journal of Water Resources & Water Engineering. 2022, 33(2), 158 (in Chinese).
李昇, 张岩, 焦凯.水资源与水工程学报, 2022, 33(2), 158.
6 Arabani M, Hamedi G H. Journal of Materials in Civil Engineering, 2011, 23(6), 802.
7 Lin C, Peng J T, Guo Z Y, et al. Journal of Materials in Civil Enginee-ring, 2015, 29(3), D4015003.
8 Hou Y Q, Ji X P, Li J, et al. Materials (Basel, Switzerland), 2018, 11(12), 2528.
9 Feng D C, Wei W D, Zhan S T. Journal of Highway and Transportation Research and Development, 2013, 30(5), 47 (in Chinese).
冯德成, 魏文鼎, 詹苏涛.公路交通科技, 2013, 30(5), 47.
10 Wang H N, Xu H, Wang J F, et al. Journal of Chang'an University (Natural Science Edition), 2022, 42(3), 52(in Chinese).
汪海年, 许卉, 王江峰, 等.长安大学学报 (自然科学版), 2022, 42(3), 52.
11 Cheng Z Q, Zhang X Y, Kong F S, et al. Materials Reports, 2020, 34(S2), 1288 (in Chinese).
成志强, 张晓燕, 孔繁盛, 等.材料导报, 2020, 34(S2), 1288.
12 Wang D Y, Guo X L, Tang C. Journal of Building Materials, 2021, 24(3), 624 (in Chinese).
王端宜, 郭秀林, 唐成. 建筑材料学报, 2021, 24(3), 624.
13 Shao X D, Cao J H, Zhang Y, et al. Innovative bridge structures based on ultra-high performance concrete (UHPC) —theory, experiment and application, China Communications Press, China, 2021, pp. 3 (in Chinese).
邵旭东, 曹君辉, 张阳, 等. 基于超高性能混凝土(UHPC)的桥梁新结构—理论、试验与应用, 人民交通出版社, 2021, pp. 3.
14 Comyn J. International Journal of Adhesion and Adhesives, 1992, 12(3), 145.
15 Wang S M, Zhang L H, Dai S L. Applied Chemical Industry, 2020, 49(12), 3155 (in Chinese).
王书敏, 张丽华, 代淑兰. 应用化工, 2020, 49(12), 3155.
16 Zhu B Y, Zhao Z G. Fundamentals of interfacial chemistry, Chemical Industry Press, China, 1996, pp. 206 (in Chinese).
朱步瑶, 赵振国. 界面化学基础, 化学工业出版社, 1996, pp. 206.
17 Wang L, Jia Y G, Zhang D W, et al. Journal of Composite Materials, 2016, 33(10), 2380 (in Chinese).
王岚, 贾永杰, 张大伟, 等.复合材料学报, 2016, 33(10), 2380.
18 Lu M, Tang X H. Journal of Hunan University of Technology, 2011, 25(4), 33 (in Chinese).
卢敏, 唐先贺. 湖南工业大学学报, 2011, 25(4), 33.
19 Hu M J, Sun D Q, Lu T, et al. Transportation Research Record, 2020, 2674(1), 307.
20 Guan S W. China Adhesive, 2015, 24(2), 57 (in Chinese).
关世伟. 中国胶粘剂, 2015, 24(2), 57.
21 Francke Barbara, Wichowska Maria. Materials, 2021, 14(9), 2272.
22 Lemarchand C A, Greenfield M L, Hansen J S. The Journal of Physical Chemistry B, 2016, 120(24), 5470.
23 Jesús Alfredo Hernández Noguera, Hugo Alexander Rondón Quintana, Wilmar Darío Fernández Gómez. Construction and Building Materials, 2014, 71, 451.
24 Adams R D, Cowap J W, Farquharson G, et al. International Journal of Adhesion and Adhesives, 2009, 29(6), 609.
25 Li G M, Du G, Zhou H L, et al. High Voltage Apparatus, 2022, 58(6), 87(in Chinese).
李光茂, 杜钢, 周鸿铃, 等. 高压电器, 2022, 58(6), 87.
[1] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[2] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[3] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[4] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[5] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[6] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[7] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[8] 吴智恒, 黄伊琳, 毕雁冰, 梁立喆, 归立发, 李卫庆, 沈培康, 田植群. 石墨烯及其衍生物改性沥青的研究进展[J]. 材料导报, 2024, 38(1): 22040410-9.
[9] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[10] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[11] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[12] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[13] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[14] 舒修远, 乔宏霞, 曹锋, 崔丽君. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 22040311-6.
[15] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed