Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23040048-15    https://doi.org/10.11896/cldb.23040048
  无机非金属及其复合材料 |
微生物自修复混凝土载体材料研究进展
侯福星, 白一鸣, 沈頔, 王剑云*
西安交通大学人居环境与建筑工程学院,西安 710049
Research Progress of Carrier Materials in Microbial Self-healing Concrete
HOU Fuxing, BAI Yiming, SHEN Di, WANG Jianyun*
School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 34400KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 裂缝的存在会使混凝土性能逐渐退化,因此进行裂缝修复具有重要意义。基于微生物诱导碳酸盐沉淀(MICP)的自修复技术作为一种环境友好、长期可行的修复方法而备受关注。在自修复体系中,微生物矿化沉积能力直接决定自修复的效果,而载体则充当微生物“保护壳”的作用,为其新陈代谢提供足够的空间,载体材料的使用显著提高了微生物抵抗恶劣环境的能力,确保自修复效果的实现。本文评述了目前国内外应用于微生物自修复混凝土体系中载体材料的研究成果。对微生物自修复混凝土的工作机理进行阐述与总结,对多孔类载体、闭合类载体、纳米材料载体以及菌群自身充当载体等不同载体材料的研究进展进行了讨论与对比,分析了载体材料的专利转化以及工程应用,并指出当前存在的问题。最后,展望了载体材料在微生物自修复混凝土领域的应用前景,旨在为该技术的应用提供一定的指导和建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯福星
白一鸣
沈頔
王剑云
关键词:  自修复机理  裂缝  微生物载体  多孔类载体  水凝胶    
Abstract: The occurrence of micro-cracks can cause serious degradation of concrete performance. So crack repair is of great significance. The self-repair technology based on Microbially Induced Carbonate Precipitation (MICP) is an environmentally friendly, long-term feasible remediation method that has attracted much attentions. For microbial based self-healing concrete, the capacity of microbial mineralization directly determines the efficiency of self-healing. While the microbial carrier acts as a ‘protective shell’ to provide sufficient space for microbial metabolism, carrier materials have significantly increased the ability of microbial to withstand extreme environment, thus ensuring the realization of the self-repair effect. In this article, the research results of carrier materials used in microbial self-healing concrete systems at home and abroad are systematically introduced. The working mechanism of microbial self-healing concrete are expounded and summarized, the research progress of different carrier materials such as porous carrier, closed carrier, nano carrier materials, and bacteria themselves as carrier are discussed and compared, the patent conversion and engineering application of carrier materials are analyzed, and the existing problems are pointed out. Finally, the application prospects of different carrier materials in microbial based self-healing concrete are prospected, aiming to provide some guidance and suggestions for the application of this technology.
Key words:  self-healing mechanism    crack    microbial carrier    porous carrier    hydrogel
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52178252)
通讯作者:  *王剑云,国家级青年人才,西安交通大学人居环境与建筑工程学院土木工程系教授、博士研究生导师。主要从事新型环境友好生物材料在土木工程领域的研究,包括微生物矿化沉积碳酸钙、微生物自修复混凝土、生物可再生混凝土、生物水泥、固废资源化等。发表国际期刊及会议论文80余篇,Google Scholar总引用次数达4 800余次,获美国专利1项和中国发明专利6项。jianyun.wang@xjtu.edu.cn   
作者简介:  侯福星,西安交通大学人居环境与建筑工程学院土木工程系博士研究生,在王剑云老师的指导下进行研究,主要从事微生物自修复混凝土中细菌载体的设计与制备研究。
引用本文:    
侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
HOU Fuxing, BAI Yiming, SHEN Di, WANG Jianyun. Research Progress of Carrier Materials in Microbial Self-healing Concrete. Materials Reports, 2024, 38(13): 23040048-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040048  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23040048
1 Zhang P, Feng J J, Chen W, et al. Materials Reports, 2018, 32(19), 12(in Chinese).
张鹏, 冯竟竟, 陈伟, 等. 材料导报, 2018, 32(19), 12.
2 Yang K H, Lim H S, Kwon S J, et al. Construction and Building Materials, 2020, 256, 119469.
3 Shi X D, He H, Liang R H, et al. China Concrete and Cement Products, 2019(6), 5(in Chinese).
石晓东, 何欢, 梁瑞华, 等. 混凝土与水泥制品, 2019(6), 5.
4 Lian J J, Gao M M, Yan Y, et al. South-to-North Water Transfers and Water Science & Technology, 2019, 19(1), 164(in Chinese).
练继建, 高毛毛, 闫玥, 等. 南水北调与水利科技, 2019, 19(1), 164.
5 Qian C X, Ren L F, Luo M. Journal of the Chinese Ceramic Society, 2015, 43(3), 619(in Chinese).
钱春香, 任立夫, 罗勉. 硅酸盐学报, 2015, 43(3), 619.
6 Wang H L, Chen C, Rong H, et al. Science & Technology Review, 2022, 40(15), 90(in Chinese).
王海良, 陈仓, 荣辉, 等. 科技导报, 2022, 40(15), 90.
7 De Muynck W, De Belie N, Verstraete W. Ecological Engineering, 2010, 36(2), 118.
8 Huang H L, Ye G, Damidot D. Cement and Concrete Research, 2013, 52, 71.
9 Xi Z Z, Zhang X. Journal of Building Materials, 2002(4), 390(in Chinese).
习志臻, 张雄. 建筑材料学报, 2002(4), 390.
10 Yao W, Zhong W H. Chinese Journal of Materials Research, 2006, 20(1), 24(in Chinese).
姚武, 钟文慧. 材料研究学报, 2006, 20(1), 24.
11 Jonkers H M, Thijssen A, Muyzer G, et al. Ecological Engineering, 2010, 36(2), 230.
12 Bang S S, Galinat J K, Ramakrishnan V. Enzyme and Microbial Techno-logy, 2001, 28(4-5), 404.
13 Barabesi C, Galizzi A, Mastromei G, et al. Journal of Bacteriology, 2007, 189(1), 228.
14 Lowenstam H A. Science, 1981, 211(4487), 1126.
15 Lian B, Hu Q N, Chen J, et al. Geochimica Et Cosmochimica Acta, 2006, 70(22), 5522.
16 Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, et al. Applied and Environmental Microbiology, 2003, 69(4), 2182.
17 Zhang Y. Research on sand cementation and concrete cracks repairment by microbially induced carbonate precipitation technology. Master's Thesis, Tsinghua university, China, 2014 (in Chinese).
张越. 微生物用于砂土胶凝和混凝土裂缝修复的试验研究. 硕士学位论文, 清华大学, 2014.
18 Bouabidi Z B, El-Naas M H, Zhang Z E. Environmental Chemistry Letters, 2019, 17(1), 241.
19 Feng C H, Zong X D, Cui B W, et al. Crystals, 2022, 12(6), 797.
20 Garmroodi M, Mohammadi M, Ramazani A, et al. International Journal of Biological Macromolecules, 2016, 86, 208.
21 Gao H, Lu J S, Jiang Y J, et al. Biofuels Bioproducts & Biorefining-Biofpr, 2021, 15(4), 1160.
22 Wang Y, Li B L, Li Y, et al. Science of the Total Environment, 2021, 774, 145136.
23 Wang J Y, Ersan Y C, Boon N, et al. Applied Microbiology and Biotechnology, 2016, 100(7), 2993.
24 Jiang L. Study on properties of self-healing concrete based on aerobic-anaerobic binary microbial mineralization system. Ph. D. Thesis, Taiyuan University of Technology, China, 2020 (in Chinese).
姜鲁. 基于好氧-厌氧二元微生物矿化体系的自修复混凝土性能研究. 博士学位论文, 太原理工大学, 2020.
25 Wang J Y, Soens H, Verstraete W, et al. Cement and Concrete Research, 2014, 56, 139.
26 Wang J Y, Tittelboom K V, Belie N D, et al. Construction and Building Materials, 2011, 26(1), 532.
27 Wang J Y, Mignon A, Trenson G, et al. Cement & Concrete Composites, 2018, 93, 309.
28 Wang J Y, De Belie N, Verstraete W. Journal of Industrial Microbiology & Biotechnology, 2012, 39(4), 567.
29 Li Z, Feng T, Zhou M J, et al. Concrete, 2017(6), 5(in Chinese).
李珠, 冯涛, 周梦君, 等. 混凝土, 2017(6), 5.
30 Ersan Y C, Verbruggen H, De Graeve I, et al. Cement and Concrete Research, 2016, 83, 19.
31 Ersan Y C, Gruyaert E, Louis G, et al. Frontiers in Microbiology, 2015, 6, 1228.
32 Van Paassen L A, Daza C M, Staal M, et al. Ecological Engineering, 2010, 36(2), 1685.
33 Zhu Y, Wu M, Gao N, et al. Journal of Hazardous Materials, 2018, 341, 36.
34 Ren L F, Qian C X. Journal of the Chinese Ceramic Society, 2014, 42(11), 1389(in Chinese).
任立夫, 钱春香. 硅酸盐学报, 2014, 42(11), 1389.
35 Qian C X, Chen H C, Ren L F, et al. Frontiers in Microbiology, 2015, 6, 314.
36 Achal V, Pan X L. Current Microbiology, 2011, 62(3), 894.
37 Zhan Q W. Cementation of sandy soil by shallow mineralization of microbe capturing carbon dioxide and application in fugitive dust, Ph. D. Thesis, Southeast University, China, 2018 (in Chinese).
詹其伟. 微生物捕碳浅层矿化胶结沙土及其抑尘应用, 博士学位论文, 东南大学, 2018.
38 Luo S, Liu B, Zhang J L, et al. Journal of Shenzhen University (Science and Engineering), 2020, 37(1), 25(in Chinese).
罗顺, 刘冰, 张金龙, 等. 深圳大学学报(理工版), 2020, 37(1), 25.
39 Algaifi H A, Abu Bakar S, Sam A R M, et al. Construction and Building Materials, 2020, 254, 119258.
40 Jonkers H M, Schlangen E. In:Proceedings of the the First International Conference on Self Healing Materials. Noordwijk, The Netherlands, 2007, pp.18.
41 Xu J, Tang Y H, Wang X Z. Materials Reports, 2021, 35(22), 22039(in Chinese).
徐晶, 唐一洪, 王先志. 材料导报, 2021, 35(22), 22039.
42 Jonkers H M, Schlangen E. In:Proceedings of the 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting. Cape Town, South Africa, 2009, pp.215.
43 Liu S Y, Yu J, Liu W Q, et al. Journal of Building Materials, 2021, 24(4), 687(in Chinese).
刘士雨, 俞缙, 刘文强, 等. 建筑材料学报, 2021, 24(4), 687.
44 Weiser D, Soti P L, Banoczi G, et al. Tetrahedron, 2016, 72(46), 7335.
45 Dzionek A, Wojcieszynska D, Guzik U. Electronic Journal of Biotechno-logy, 2016, 23, 28.
46 Reynolds D. Lightweight aggregates as an internal curing agent for low-cracking high-performance concrete. Master's Thesis, University of Kansas, USA, 2009.
47 Han S, Choi E K, Park W, et al. Applied Biological Chemistry, 2019, 62(1), 1.
48 Jiang L, Jia G H, Jiang C, et al. Construction and Building Materials, 2020, 232, 117222.
49 Zeng Z J, Effeney G, Millar G J, et al. Environmental Technology & Innovation, 2021, 23, 101595.
50 Guan J J, Gao C Y, Shen J C. Chemical Journal of Chinese Universities, 2001(2), 317(in Chinese).
管建均, 高长有, 沈家骢. 高等学校化学学报, 2001(2), 317.
51 Zhou L C, Bai X, Li Y F. Chemistry, 2008(9), 679(in Chinese).
周林成, 白雪, 李彦锋. 化学通报, 2008(9), 679.
52 Hashemizadeh S, Tavakoli O, Tabandeh F, et al. In:Proceedings of the World Renewable Energy Congress-Sweden, Linköping, Sweden, 2011, pp.311.
53 Ersan Y C, Da Silva F B, Boon N, et al. Construction and Building Materials, 2015, 88, 196.
54 Wiktor V, Jonkers H M. Cement & Concrete Composites, 2011, 33(7), 763.
55 Xu J, Wang X, Zuo J, et al. Advances in Materials Science and Engineering, 2018, 2018(6), 1.
56 Risdanareni P, Wang J Y, Boon N, et al. Construction and Building Materials, 2023, 368, 130375.
57 Zhang J G, Liu Y Z, Feng T, et al. Construction and Building Materials, 2017, 148, 610.
58 Zhou M J. Preliminary study on crack-healing and basic mechanical properties of concrete with expand perlite as microbial carrier. Master's Thesis, Taiyuan University of Technology, China, 2018 (in Chinese).
周梦君. 基于膨胀珍珠岩固载微生物的混凝土裂缝宽度修复及基本力学性能初探. 硕士学位论文, 太原理工大学, 2018.
59 Risdanareni P, Wang J, Boon N, et al. In:proceedings of the Resilient Materials for Life 2020 (RM4L2020), Cardiff University, 2021, pp.153.
60 Han S, Jang I, Choi E K, et al. Journal of Environmental Engineering, 2020, 146(7), 04020072.
61 Bhaskar S, Hossain K M A, Lachemi M, et al. Cement & Concrete Composites, 2017, 82, 23.
62 Siddique R, Jameel A, Singh M, et al. Construction and Building Materials, 2017, 142, 92.
63 Jafarnia M S, Saryazdi M K, Moshtaghioun S M. Construction and Buil-ding Materials, 2020, 242, 118059.
64 Xu H, Lian J, Gao M, et al. Materials, 2019, 12(14), 2313.
65 Thomas B S, Gupta R C. Renewable & Sustainable Energy Reviews, 2016, 54, 1323.
66 Khushnood R A, Qureshi Z A, Shaheen N, et al. Science of the Total Environment, 2020, 703, 135007.
67 Liu C, Zhang R, Liu H, et al. Construction and Building Materials, 2021, 285, 122941.
68 Duan Z H, Lv Z Y, Xiao J Z, et al. Materials, 2023, 16(6), 2371.
69 Silva F B, Boon N, Belie N D, et al. Journal of Commercial Biotechnology, 2015, 21(1), 31.
70 Niu Z, Li Z, Zhang J G, et al. New Building Materials, 2019, 46(6), 14(in Chinese).
钮政, 李珠, 张家广, 等. 新型建筑材料, 2019, 46(6), 14.
71 Wang J Y, Snoeck D, Van Vlierberghe S, et al. Construction and Buil-ding Materials, 2014, 68, 110.
72 Ni Z, Du X X, Wang S, et al. Journal of Shenzhen University (Science and Engineering), 2011, 28(3), 249(in Chinese).
倪卓, 杜学晓, 王帅, 等. 深圳大学学报(理工版), 2011, 28(3), 249.
73 Xu J, Wang X Z. Journal of Tsinghua University(Science and Technology), 2019, 59(8), 601(in Chinese).
徐晶, 王先志. 清华大学学报(自然科学版), 2019, 59(8), 601.
74 White S R, Sottos N R, Geubelle P H, et al. Nature, 2001, 409(6822), 794.
75 Ou J P, Kuang Y C. Chinese Journal of Solid Mechanics, 2004(3), 320(in Chinese).
欧进萍, 匡亚川. 固体力学学报, 2004(3), 320.
76 Xing F, Ni Z, Tang J N, et al. Journal of Shenzhen University (Science and Engineering), 2013, 30(5), 486(in Chinese).
邢锋, 倪卓, 汤皎宁, 等. 深圳大学学报(理工版), 2013, 30(5), 486.
77 Rule J D, Sottos N R, White S R. Polymer, 2007, 48(12), 3520.
78 Tripathi M, Kumar D, Rajagopal C, et al. Journal of Applied Polymer Science, 2014, 131(15), 40572.
79 Hoffman A S. Advanced Drug Delivery Reviews, 2012, 64, 18.
80 Malinen M M, Kanninen L K, Corlu A, et al. Biomaterials, 2014, 35(19), 5110.
81 Wang J Y, Dewanckele J, Cnudde V, et al. Cement & Concrete Compo-sites, 2014, 53, 289.
82 Wang J, Mignon A, Snoeck D, et al. Frontiers in Microbiology, 2015, 6, 1088.
83 Soysal A, Milla J, King G M, et al. Transportation Research Record, 2020, 2674(6), 113.
84 Liu S, Li L. ACS Applied Materials & Interfaces, 2016, 8(43), 29749.
85 Chen Q, Zhu L, Chen H, et al. Advanced Functional Materials, 2015, 25(10), 1598.
86 Ma X, Guo L, Ji Q, et al. Polymer Chemistry, 2016, 7(1), 26.
87 Luo F, Sun T L, Nakajima T, et al. Advanced Materials, 2015, 27(17), 2722.
88 Ghoorchian A, Simon J R, Bharti B, et al. Advanced Functional Materials, 2015, 25(21), 3122.
89 Xu J, Wang X. Construction and Building Materials, 2018, 167, 1.
90 Su Y, Zheng T, Qian C. Construction and Building Materials, 2021, 273, 121740.
91 Wu M, Hu X, Zhang Q, et al. Cement & Concrete Composites, 2020, 113, 103718.
92 Snoeck D, Van Tittelboom K, Steuperaert S, et al. Journal of Intelligent Material Systems and Structures, 2014, 25(1), 13.
93 Seifan M, Sarmah A K, Ebrahiminezhad A, et al. Applied Microbiology and Biotechnology, 2018, 102(5), 2167.
94 Seifan M, Ebrahiminezhad A, Ghasemi Y, et al. Bioprocess and Biosystems Engineering, 2019, 42(1), 37.
95 Da Silva F B, De Belie N, Boon N, et al. Construction and Building Materials, 2015, 93, 1034.
96 Khoury P H, Lombardi S J, Slepecky R A. Current Microbiology, 1987, 15(1), 15.
97 李涛, 赖小颖, 黄亚娥, 等. 中国专利, CN111138107A, 2021.
98 王金梁, 张勇, 王道隆, 等. 中国专利, CN111056782B, 2021.
99 李珠, 张家广, 赵林. 中国专利, CN106045400A, 2016.
100 Soens H, Belie N D, Wang J, et al. U.S. patent, US9611177, 2017.
101 闫治国, 朱合华, 周帅, 等. 中国专利 CN103043937A, 2015.
102 罗勉, 白镜泉, 荆康, 等. 中国专利, CN111116077A, 2022.
103 金宏程, 郑涛, 王军, 等. 中国专利, CN113149511B, 2022.
104 杨兴旺, 李程北, 赵路遥, 等. 中国专利, CN113698870B, 2022.
105 朱乃姝, 金丰年, 李锐, 等. 中国专利, CN109320144A, 2019.
106 徐晶, 王先志, 姚武. 中国专利, CN113121145B, 2022.
107 路涛, 高宗鸿, 陈杰, 等. 中国专利, CN115772008A, 2023.
108 Sierra-Beltran M G, Jonkers H M, Mera-Ortiz W. Doklady Earth Sciences, 2015, 426(1), 665.
109 Du W X, Qian C X, Xie Y D. Journal of Building Engineering, 2023, 63, 105512.
110 Qian C X, Zheng T W, Zhang X, et al. Construction and Building Materials, 2021, 290, 123226.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[3] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[4] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[5] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[6] 杨水艳, 盛扬, 孙一新, 蔡仁钦, Mark Bradley, 张嵘. 基于丙烯酸-N-琥珀酰亚胺酯共聚物交联剂的壳聚糖水凝胶的生物相容性研究[J]. 材料导报, 2024, 38(12): 22120119-10.
[7] 王石, 陈昱恺, 周新甲, 呼博渊, 王勇, 李瑜, 井新利. 导电高分子水凝胶及其应变传感性能研究进展[J]. 材料导报, 2024, 38(11): 22120184-11.
[8] 元强, 王攒, 姚灏, 黄炬, 左胜浩, 黄海. 活性改性剂合成及其对环氧胶黏剂力学与界面粘接性能的影响[J]. 材料导报, 2024, 38(11): 22120199-8.
[9] 龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
[10] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[11] 饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹, 陈维毅. 荧光水凝胶传感器及其传感响应机制研究进展[J]. 材料导报, 2023, 37(5): 21010130-8.
[12] 常洪雷, 李晨聪, 王晓龙, 王剑宏, 王云飞, 曲明月, 刘健. 复合矿物掺合料对砂浆自修复性能的影响[J]. 材料导报, 2023, 37(2): 21070177-7.
[13] 何贤会, 杨培昕, 卢小鸾, 汤陆扬, 付阳洋, 彭黔荣, 杨敏. 用于阴道黏膜给药的纳米胶束复合温敏水凝胶的制备及性能评价[J]. 材料导报, 2023, 37(19): 22040117-7.
[14] 李晓玉, 连海兰. 仿贻贝水凝胶的研究进展[J]. 材料导报, 2023, 37(19): 21120186-11.
[15] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed