Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 22010257-6    https://doi.org/10.11896/cldb.22010257
  高分子与聚合物基复合材料 |
氯化铝交联双网络聚乙烯醇/角蛋白自愈合水凝胶
许梦媛, 刘让同*, 李亮, 刘淑萍, 李淑静
中原工学院服装学院,郑州 450007
Self-healing of Polyvinyl Alcohol/Wool Keratin Hydrogel with Dual Crosslinked Network by Aluminum Chloride
XU Mengyuan, LIU Rangtong*, LI Liang, LIU Shuping, LI Shujing
College of Fashion Technology, Zhongyuan University of Technology, Zhengzhou 450007, China
下载:  全 文 ( PDF ) ( 15016KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水凝胶作为一种特殊的材料形式在自愈合应用方面具有广阔的前景,研发功能更全面、自愈合能力更强的水凝胶很有必要。本工作以AlCl3化学交联聚乙烯醇与角蛋白,构建由氢键网络、Al3+络合网络互穿的双网络结构,制备自愈合性能良好的PVA/KE复合水凝胶。通过红外光谱、扫描电镜、热重分析仪、万能材料拉伸仪对水凝胶的结构和性能进行表征。结果表明:交联剂的增加使水凝胶表面由粗糙变细滑,内部形成孔径范围由大变小、孔型结构由开孔变为紧密的三维多孔结构;双网络结构造成水凝胶特征峰吸收强化和位置偏移,增加水凝胶热降解所需能量,影响热降解行为,使残留物增加,热稳定性改善;氯化铝浓度增大使水凝胶的韧性提高,浓度为2%时断裂强度和断裂伸长率最大,分别为8.28 MPa和163.2%;水凝胶的自愈合和抗疲劳性具有变化的一致性,自愈合效能随着交联剂浓度的增加、愈合时间的延长而增加,愈合时间为12 h且交联剂浓度为2%时愈合效能最好,能够达到89.4%,表现出明显的自修复功能。本研究结果为深入探索水凝胶的自愈合性能奠定了实践基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许梦媛
刘让同
李亮
刘淑萍
李淑静
关键词:  聚乙烯醇  羊毛角蛋白  氯化铝  水凝胶  自愈合    
Abstract: As a special material form, hydrogel has broad prospects in self-healing application. It is necessary to develop hydrogels with more comprehensive function and stronger self-healing ability. In this work, AlCl3 for chemically crosslinking poly (vinyl alcohol) (PVA) and wool keratin (KE) was used to construct a dual network structure with hydrogen bonding network and Al3+ ion complexation network interpenetrating, and the PVA/KE composite hydrogels with good self-healing properties were prepared. The structure and properties of the hydrogels were characterized by FTIR, SEM, TG and universal tensile tester. The results showed that the hydrogel surface became rough and slippery, a three-dimensional porous structure inside hydrogel vary their pore sizes from big to small, alter their pore shape from open to tight, with the increase of crosslinking agent. The dual-network structure resulted in absorption enhancement and migration of hydrogel peaks in FTIR, which increased the energy requirement for thermal degradation of hydrogels, and affected the thermal degradation behavior with increasing the weight loss rate of residues. When the concentration of aluminum chloride increased, the strength and elongation at break of hydrogel increased, the sample at the concentration 2% reach the best strength and elongation at break with 8.28 MPa and 163.2% respectively. The self-healing and fatigue resistance of hydrogels were consistent, which was closely related to the concentration of aluminum chloride and healing time, and the healing efficiency of hydrogel increased with the increase of crosslinking agent concentration and healing time. When the healing time was 12 h and the concentration of crosslinking agent was 2%, the best healing efficiency occurred and reach up 89.4%. The results of this study lay a practical foundation for further exploring self-healing properties of hydrogels.
Key words:  polyvinyl alcohol    wool keratin    aluminum chloride    hydrogel    self-healing
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TQ317  
基金资助: 国家重点基础研究计划(2017YFB0309100)
通讯作者:  * 刘让同,博士,中原工学院服装学院院长、二级教授、硕士研究生导师,主要研究方向为纺织服装新材料。教育部纺织类专业教学指导委员会委员,主持和参与科技部重点专项(包括863计划)、国家自然科学基金、国家技术创新计划、省重点实验室计划等国家和省部级项目32项,主持企业资助项目21项。发表论文168篇。获得中国纺织工业联合会科技进步二等奖2项,河北省科技进步二等奖1项。ranton@126.com   
作者简介:  许梦媛,2019年6月于黄淮学院获得工学学士学位。现为中原工学院硕士研究生,在刘让同教授的指导下进行研究。目前主要研究领域为纺织服装新材料。
引用本文:    
许梦媛, 刘让同, 李亮, 刘淑萍, 李淑静. 氯化铝交联双网络聚乙烯醇/角蛋白自愈合水凝胶[J]. 材料导报, 2023, 37(15): 22010257-6.
XU Mengyuan, LIU Rangtong, LI Liang, LIU Shuping, LI Shujing. Self-healing of Polyvinyl Alcohol/Wool Keratin Hydrogel with Dual Crosslinked Network by Aluminum Chloride. Materials Reports, 2023, 37(15): 22010257-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010257  或          http://www.mater-rep.com/CN/Y2023/V37/I15/22010257
1 Ajeesh Chandrasekharan, Keum-Yong Seong, Sang-Gu Yim, et al. Journal of Polymer Science Part A:Polymer Chemistry, 2019, 57(4), 522.
2 Sun Xia, Qin Zhihui, Ye Lei, et al. Chemical Engineering Journal, 2020, 382, 122832.
3 Li L, Yan B, Yang J, et al. Advanced Materials, 2015, 27(7), 1294.
4 Wang Q, Zhang Y Y, Dai X Y, et al. Science China (Technological Sciences), 2017, 60(1), 82.
5 Chen Y, Dai S, Zhu H, et al. New Journal of Chemistry, 2021, 45(1), 314.
6 Li L, Yan B, Yang J, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 9221.
7 Guo X, Xu D, Yuan H, et al. Journal of Materials Chemistry A, 2019, 7(47), 27081.
8 Oh J S, Lee E J. Macromolecular Research, 2021, 29(5), 383.
9 Mao C, Xiang Y, Liu X, et al. ACS Nano, 2017, 11(9), 9010.
10 Yang J C, Mun J, Kwon S Y, et al. Advanced Materials, 2019, 31(48), e1904765.
11 Miao T, Miller E J, Mckenzie C, et al. Journal of Materials Chemistry B, 2015, 3(48), 9242.
12 Freedman B R, Kuttler A, Beckmann N, et al. Nature Biomedical Engineering, DOI:10. 1038/s41551-021-00810-0.
13 Lim C, Shin Y, Jung J, et al. APL Materials, 2019, 7, 031502.
14 Huang J X, Wu C W, Yu X G, et al. Materials Reports, 2022, 36(8), 20070335(in Chinese).
黄金鑫, 吴承伟, 余小刚, 等. 材料导报, 2022, 36(8), 20070335.
15 Zhu Peng, Zhang Xingqun, Wang Yunlong, et al. Shanghai Textile Science & Technology, 2020, 48(11), 13(in Chinese).
朱鹏, 张兴群, 王云龙, 等. 上海纺织科技, 2020, 48(11), 13.
16 Wang Shaochen, You Jing, Miao Yanqing, et al. Chemical Science and Technology, 2021, 29(2), 64(in Chinese).
王少晨, 尤静, 苗延青, 等. 化工科技, 2021, 29(2), 64.
17 Liu Rangtong, Li Liang, Liu Shuping, et al. Science Technology and Engineering, 2018, 18(10), 100(in Chinese).
刘让同, 李亮, 刘淑萍, 等. 科学技术与工程, 2018, 18(10), 100.
18 Zheng Junhong, Li Liang, Liu Rangtong, et al. Journal of Textile Research, 2018, 39(3), 92(in Chinese).
郑君红, 李亮, 刘让同, 等. 纺织学报, 2018, 39(3), 92.
19 Xu Hengxing, Shi Jihua, Zhou Aojia, et al. Journal of Textile Research, 2012, 33(6), 41(in Chinese).
徐恒星, 史吉华, 周奥佳, 等. 纺织学报, 2012, 33(6), 41.
20 Wang Jiangbo, Liu Jianyong. Wool Textile Journal, 2011, 39(8), 59(in Chinese).
王江波, 刘建勇. 毛纺科技, 2011, 39(8), 59.
21 Sun Xiaojuan, Li Hongwei, Zhang Mei. Wool Textile Journal, 2021, 49(1), 21(in Chinese).
孙小娟, 李宏伟, 张梅. 毛纺科技, 2021, 49(1), 21.
22 He Guanghua, Zhao Sa, Wang Haibo, et al. Journal of Wuhan University(Natural Science Edition), 2019, 65(4), 369(in Chinese).
何广华, 赵洒, 王海波, 等. 武汉大学学报(理学版), 2019, 65(4), 369.
23 Wang Shuhua. Wool Textile Journal, 2021, 49(3), 6(in Chinese).
王淑花. 毛纺科技, 2021, 49(3), 6.
24 Yue Y, Han J, Han G, et al. Carbohydrate Polymers, 2016, 147, 155.
25 He G H, Zhu C, Ye S Y, et al. International Journal of Biological Macromolecules, 2016, 91, 828.
26 Xu Mengjie, Zhang Xiumei, Hu Yinchun, et al. Polymer Materials Science and Engineering, 2020, 36(4), 55(in Chinese).
徐梦洁, 张秀梅, 胡银春, 等. 高分子材料科学与工程, 2020, 36(4), 55.
27 Wang H L, Chen F L, Hu X M. Journal of Southwest University (Natural Science), 2013, 35(1), 160.
[1] 龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
[2] 饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹, 陈维毅. 荧光水凝胶传感器及其传感响应机制研究进展[J]. 材料导报, 2023, 37(5): 21010130-8.
[3] 徐宁,汪海年, 陈玉, 丁鹤洋, 冯珀楠, 赵云飞. 基于分子动力学的废食用油改性沥青自愈合特性研究[J]. 材料导报, 2023, 37(15): 21110097-8.
[4] 严亮, 王沛, 黄国辉, 李慧敏, 蒋坤. 基于动态非共价键作用的HP(AA-co-AM)自愈合凝胶的构建及传感性能研究[J]. 材料导报, 2023, 37(14): 22010002-6.
[5] 陈宇良, 张绍松, 徐金俊, 叶培欢, 姜锐. 压剪作用下PVA纤维再生混凝土力学性能试验研究[J]. 材料导报, 2023, 37(11): 21090102-7.
[6] 张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
[7] 范雷倚, 王锐, 何睿杰, 张瑞阳, 张骞, 周莹. 聚合氯化铝原位改性聚氨酯泡沫用于油水分离[J]. 材料导报, 2022, 36(9): 21040138-7.
[8] 黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展[J]. 材料导报, 2022, 36(8): 20070335-7.
[9] 王通, 王广飞, 张淑敏, 曲承蕾, 李诚博, 高永林. 基于天然多糖的水凝胶伤口敷料的研究进展[J]. 材料导报, 2022, 36(6): 20060050-9.
[10] 胡丹娜, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 生理pH下可控释放胰岛素的温度/葡萄糖双响应可注射复合水凝胶[J]. 材料导报, 2022, 36(3): 21040234-7.
[11] 宗丹, 盛扬, 李新庆, 潘艳, 孙一新, 邓林红, Mark Bradley, 张嵘. 以聚醚聚酯丙烯酸酯为交联剂的pH响应性水凝胶纳米微球的制备及药物释放研究[J]. 材料导报, 2022, 36(14): 21020090-7.
[12] 贾梦伟, 张婕, 周顺风, 杨云鹏, 卢立新. 环境响应水凝胶的非对称结构设计与智能仿生[J]. 材料导报, 2022, 36(12): 20100208-9.
[13] 吕颖, 胡永琴, 厚琛, 张超, 刘玉菲. 丙烯酸/丙烯酰胺/碳纳米管复合水凝胶及其传感性能研究[J]. 材料导报, 2022, 36(12): 21030154-7.
[14] 李心, 郭琳, 黄金的, 王丽, 谢海泉, 叶立群. 碳材料/甲壳素复合水凝胶高效太阳能海水淡化[J]. 材料导报, 2022, 36(12): 21030098-6.
[15] 冯凯萍, 吕冰海, 王帅, 赵天晨, 周兆忠. SiC晶片金刚石磨料凝胶抛光盘的制备与性能分析[J]. 材料导报, 2022, 36(12): 21050197-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed