Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22010097-7    
  金属与金属基复合材料 |
火电机组高中压转子选材的研究进展
李翠芹1,2, 裴玉冰1,2, 范华1,2, 郭维华1,2, 王天剑1,2, 吴比1,2, 巩秀芳1,2
1 长寿命高温材料国家重点实验室,四川 德阳 618000
2 东方电气集团东方汽轮机有限公司,四川 德阳 618000
Research Progress on Materials of High-pressure and Medium-pressure Rotors for Thermal Power Plants
LI Cuiqin1,2, PEI Yubing1,2, FAN Hua1,2, GUO Weihua1,2, WANG Tianjian1,2, WU Bi1,2, GONG Xiufang1,2
1 State Key Laboratory of Long-life High-temperature Materials, Deyang 618000, Sichuan, China
2 Dongfang Electric Group Dongfang Steam Turbine Co., Ltd., Deyang 618000, Sichuan, China
下载:  全 文 ( PDF ) ( 4082KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了节约资源和保护环境,传统燃煤机组面临降煤耗、提热效的重大挑战,热效率的提高依赖于机组蒸汽参数的优化和材料的更新换代。转子作为汽轮机组的核心热端部件之一,在高温高压蒸汽中服役并承受各种交变负载。随着蒸汽温度从600 ℃升高到700 ℃以上,转子选材面临更严苛的挑战——材料逐渐由传统的9~12%Cr耐热钢过渡到镍基高温合金。对于不同参数的汽轮机转子选材,各国纷纷制定了研究计划。本文论述了转子选材的注意事项以及世界各大国的研究进展,并回顾了国内汽轮机机组的发展情况;综述了国外700 ℃等级汽轮机高中压转子选材研究成果,为我国700 ℃等级汽轮机研发提供一定视角和参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李翠芹
裴玉冰
范华
郭维华
王天剑
吴比
巩秀芳
关键词:  燃煤发电  超超临界机组  高中压转子  9~12%Cr耐热钢  镍基高温合金    
Abstract: For saving resources and protecting the environment, traditional coal-fired units are faced with the major challenges of reducing coal consumption and improving thermal efficiency. The improvement of thermal efficiency depends on the optimization of steam parameters of the units and the upgrading of materials. As one of the core hot-end components of the steam turbine, the rotor serves in high-temperature and high-pressure steam and bears various alternating loads. With steam temperature rising from 600 ℃ to 700 ℃ above, materials of rotors are facing a more severe challenge that materials of rotors are gradually transitioning from traditional 9—12%Cr heat-resistant steels to nickel-based superalloys. Worldwide countries have formulated research plans for rotor materials used by steam turbines with different parameters. This paper discusses the precautions for rotor material and the research progress in major countries in the world, and reviews the development of domestic steam turbines. It also reviews the foreign research results on the materials for 700 ℃-level high-pressure and medium-pressure rotors, which can provide a certain perspective and reference for the research and development of 700 ℃-level steam turbines in our country.
Key words:  coal-fired power generation    ultra-supercritical steam turbines    high-pressure and medium-pressure rotors    9—12%Cr heat-resistant steels    nickel-based superalloys
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TK26  
基金资助: 科技部国家重点研发计划(2021YFB3704104)
通讯作者:  gongxiufang@dongfang.com   
作者简介:  李翠芹,初级工程师,分别于2016年、2019年取得西安理工大学工学学士学位和硕士学位。2019年入职东方电气集团东方汽轮机有限公司,现从事长寿命高温材料开发与应用以及大尺寸高温部件服役性能及可靠性评价方面的工作。发表论文4篇,授权发明专利1项。
巩秀芳,正高级工程师,于2001年取得山西师范大学物理系学士学位,2006年取得复旦大学硕、博士学位。同年就职于东方电气集团东方汽轮机有限公司,目前担任长寿命高温材料国家重点实验室副主任,国家新材料测试评价平台钢铁行业中心副理事长、电力行业电站金属材料标准化技术委员会委员、中国航空学会失效分析分会委员,发表SCI/EI等高水平论文60余篇,授权专利36项,获得省部级、集团级科技进步奖10项。
引用本文:    
李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
LI Cuiqin, PEI Yubing, FAN Hua, GUO Weihua, WANG Tianjian, WU Bi, GONG Xiufang. Research Progress on Materials of High-pressure and Medium-pressure Rotors for Thermal Power Plants. Materials Reports, 2022, 36(Z1): 22010097-7.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22010097
1 Zeiler G. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, DOI: org/10.1016/B978-0-08-100552-1.00006-3.
2 王倩, 王卫良, 刘敏, 等.热力发电, 2021, 50(2),1.
3 杨建道, 彭泽瑛.热力透平, 2018, 47(2),85.
4 Nomoto H. Development in materials for ultra-supercritical (USC) and advanced ultra-supercritical (A-USC) steam turbines. Advances in Steam Turbines for Modern Power Plants, Japan, 2017, pp.263.
5 蔡小燕. 700 ℃超超临界燃煤发电机组系统设计及热经济性研究.硕士学位论文,华中科技大学, 中国, 2013.
6 沈邱农, 陈文辉. 动力工程, 2002, 22(2),1659.
7 陶凯, 于慎君, 韩璐, 等.材料导报, 2012,26(1),83.
8 史进渊, 杨宇, 孙庆, 等.动力工程, 2003, 23(2),2252.
9 毛雪平. 超临界汽轮机转子材料特性的实验研究.博士学位论文, 华北电力大学, 中国, 2003.
10 林腾昌, 王慧, 王成杰,等.铸造技术, 2012, 33(11),1267.
11 ASME Boiler, Pressure Vessel Committee, Subcommittee on Materia. ASME boiler and pressure vessel code. Section II, PA. Material specifications. The American Society of Mechanical Engineers, USA, 2013, pp.26.
12 Abe F. International Journal of Pressure Vessels & Piping, 2008, 85(1-2),99.
13 Sun F, Gu Y F, Yan J B, et al. Journal of Alloys & Compound, 2016, 687,389.
14 Abe F. Engineering, 2015, 1(2), 211.
15 毛雪平, 王罡, 马志勇. 现代电力, 2005,22(1),69.
16 Abe F. Materials for ultra-supercritical and advanced ultra-supercritical power plants∥new martensitic steels, National Institute for Materials Science, Japan,2017, pp.323.
17 王志武, 宋涛, 梅伟, 等. 金属热处理, 2012, 37(4),1.
18 Retired R G N, Koza D, Wen H. Ultra-Supercritical Coal Power Plants, DOI: org/10.1533/9780857097514.1.23.
19 田仲良, 包汉生, 何西扣, 等.钢铁研究学报, 2015, 27(9),1.
20 Guan S, Cui C Y. Acta Metallurgica Sinica, 2015, 28(9),1083.
21 Xie X S, Chi C Y, Zhao S Q, et al. Materials Science Forum, 2012, 747-748, 594.
22 赵成志, 魏双胜, 高亚龙, 等.钢铁研究学报, 2007, 19(9),1.
23 刘正东, 程世长, 干勇, 等.钢铁, 2010, 45(10),1.
24 刘入维, 肖平, 钟犁,等. 热力发电, 2017, 46(9),1.
25 Hald, John. Steel Research, 1996, 67(9),369.
26 Berger C, Vanstone R W. In: 3rd Int. Conference on Improved Coal-Fired Power Plants, EPRI-Meeting, Conference on Materials for Combined Cycle Power Plant. San Francisco, 1991,pp. 42.
27 熊林敞, 田仲良. 上海金属, 2018, 40(1),89.
28 毛健雄.电力建设, 2013,34(8),69.
29 Gianfrancesco A D. A-USC programs in the european union, Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Italy, 2017, pp. 773.
30 Zhao J C, Ravikumar V, Beltran A M. Metallurgical and Materials Tran-sactions A, 2001, 32(6),1271.
31 张燕平, 蔡小燕, 黄树红.中国电力, 2012, 45(2),16.
32 Viswanathan R, Henry J F, Tanzosh J, et al. Journal of Materials Engineering and Performance, 2005,14(3),281.
33 Harlow J H. In: Joint International Conference on Creep. London, 1963, pp.11.
34 Shingledecker J, Purgert R, Rawls P. In: Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013, pp.41.
35 Shingledecker J P. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, DOI: org/10.1016/B978-0-08-100552-1.00020-8.
36 Hizume A, Takeda Y, Yokota H, et al. Journal of Engineering Materials and Technology, 1987, 109(4),319.
37 刘志良. 高铬铁素体耐热钢热稳定性研究.硕士学位论文, 山东理工大学, 中国, 2010.
38 彭建强, 张宏涛, 杨晓辉, 等. 热力透平, 2017, 46(2),132.
39 王建录, 张晓东, 侯明军.热力发电, 2017, 46(8),11.
40 Gianfrancesco A D. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, DOI: org/10.1016/B978-0-08-100552-1.00013-0.
41 Fukuda M. Materials for Ultra-Supercritical and Advanced Ultra-supercritical Power Plants, 2017,22,733.
42 田仲良, 包汉生, 何西扣, 等.钢铁, 2015, 50(2),54.
43 Imano S, Saito E. Materials:Hitachi Technology, 2010, 59(2),65.
44 王为民, 潘家成, 方宇. 东方电气评论, 2009,23(89),1.
45 Liu Z, Bao H, Yang G, et al. In: Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013, pp.171.
46 屈柯楠. 700 ℃蒸汽参数发电机组热力系统优化研究.硕士学位论文,华北电力大学, 中国, 2017.
[1] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[2] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[3] 金峰, 熊江涛, 石俊秒, 郭德伦, 李京龙. GH4169旋转摩擦焊飞边成形机理研究[J]. 材料导报, 2020, 34(10): 10144-10149.
[4] 屈鹏飞, 杨文超, 岳全召, 曹凯莉, 刘林. 镍基高温合金微孪晶形成机制的研究进展[J]. 材料导报, 2019, 33(23): 3971-3978.
[5] 王晓娟, 刘林, 赵新宝, 黄太文, 杨文超, 张军, 傅恒志. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459.
[6] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[7] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[8] 丁青青,余倩,李吉学,张泽. 铼在镍基高温合金中作用机理的研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 110-115.
[9] 朱传志, 袁勇, 尹宏飞, 党莹樱, 赵新宝, 游才印. 超超临界机组用Sanicro25耐热钢研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 78-84.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed