Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 78-84    https://doi.org/10.11896/j.issn.1005-023X.2017.013.010
  材料综述 |
超超临界机组用Sanicro25耐热钢研究进展*
朱传志1,2, 袁勇1, 尹宏飞1, 党莹樱1, 赵新宝1, 游才印2
1 西安热工研究院有限公司,西安 710032;
2 西安理工大学材料科学与工程学院,西安 710048
Research Progress of Austenitic Heat Resistant Steel Sanicro25 Used in Ultra Supercritical Unit
ZHU Chuanzhi1,2,YUAN Yong1,YIN Hongfei1,DANG Yingying1,ZHAO Xinbao1,YOU Caiyin2
1 Xi’an Thermal Power Research Institute Co. Ltd., Xi’an 710032;
2 School of Materials Science and Technology, Xi’an University of Technology, Xi’an 710048
下载:  全 文 ( PDF ) ( 1801KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 简要介绍了一种700 ℃超超临界发电机组再热器和过热器的候选材料——Sanicro25奥氏体耐热钢。通过对Sanicro25组织结构、时效组织演变等微观组织,高温性能、持久强度、冲击韧性、低周疲劳强度和焊接性能等力学性能及耐蚀性研究进展的综述,指出了目前Sanicro25时效后冲击韧性大幅下降的不足,并且展望了未来Sanicro25的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱传志
袁勇
尹宏飞
党莹樱
赵新宝
游才印
关键词:  Sanicro25  超超临界机组  微观组织  力学性能    
Abstract: Austenitic heat resistant steel Sanicro25 is a promising candidate for applications of super-heaters and re-heaters in 700 ℃ advanced ultra-supercritical power plants. This review briefly describes the chemical composition, microstructure and its evolution, mechanical properties, welding properties, steam oxidation and corrosion resistance of Sanicro25. The impact toughness of Sanicro25 decreases dramatically during long term thermal exposure, which may affect the safety of power plants. The future research directions on the performance improvement of the Sanicro25 are discussed.
Key words:  Sanicro25    advanced ultra-supercritical    microstructure    mechanical properties
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TG142.1  
基金资助: *华能国际电力股份有限公司科技项目(ZD-15-HJK02)
通讯作者:  袁勇:通讯作者,男,1973年生,研究员,主要从事超超临界电站高温合金的开发 E-mail:masyy@163.com   
作者简介:  朱传志:男,1991年生,硕士研究生,主要从事超超临界电站高温合金的研究
引用本文:    
朱传志, 袁勇, 尹宏飞, 党莹樱, 赵新宝, 游才印. 超超临界机组用Sanicro25耐热钢研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 78-84.
ZHU Chuanzhi,YUAN Yong,YIN Hongfei,DANG Yingying,ZHAO Xinbao,YOU Caiyin. Research Progress of Austenitic Heat Resistant Steel Sanicro25 Used in Ultra Supercritical Unit. Materials Reports, 2017, 31(13): 78-84.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.010  或          http://www.mater-rep.com/CN/Y2017/V31/I13/78
1 Viswanathan R, Bakker W. Materials for ultra supercritical coal power plants-Boiler materials: Part 1[J]. J Mater Eng Perform,2015,10(1):81.
2 Li Fusheng. Countermeasures for material nationalization of USC units[J]. Chin J Power Eng,2004,24(3):311(in Chinese).
林富生. 超超临界参数机组材料国产化对策[J]. 动力工程学报,2004,24(3):311.
3 Mao Xueping, Wang Gang, Ma Zhiyong. The development of materials of supercritical units or ultra supercritical units[J]. Modern Electric Power,2005,22(1):69(in Chinese).
毛雪平, 王罡, 马志勇. 超超临界机组汽轮机材料发展状况[J]. 现代电力,2005,22(1):69.
4 Viswanathan R, Henry J F, Tanzosh J, et al. US program on materials technology for ultra-supercritical coal power plants[J]. J Mater Eng Perform,2005,14(3):281.
5 Zhou Rongcan, Fan Changxin. Material research and material selection analysis of ultra supercritical thermal power unit[J]. China Electric Power,2005,38(8):41(in Chinese).
周荣灿, 范长信. 超超临界火电机组材料研究及选材分析[J]. 中国电力,2005,38(8):41.
6 Zhao Zhongping, Yao Mingfang. Exploring on development ultra-supercritical pressure power generation units-development of USC units in China as viewed from the materials[J].Chin J Power Eng,2000,20(2):640(in Chinese).
赵中平, 姚珉芳. 超级超临界机组开发探讨——从材料的成就看我国超级超临界机组的发展[J]. 动力工程学报,2000,20(2):640.
7 Viswanathan R, Coleman K, Rao U. Materials for ultra-supercritical coal-fired power plant boilers[J]. Int J Pressure Vessels Piping,2006,83(11-12):778.
8 Gong X F, Yang G X, Fan H, et al. Materials for ultra-supercritical steam turbines operating at the steam temperature above 600 ℃[J]. Dongfang Electric Rev,2011,25(97):7(in Chinese).
巩秀芳,杨功显,范华,等.600 ℃以上超超临界汽轮机组用材[J].东方电气评论,2011,25(97):7.
9 Zhao Chengzhi, Wei Shuangsheng, Gao Yalong, et al. Progress of heat-resistant steel for supercritical and ultra-supercritical steam turbine[J].J Iron Steel Res,2007,19(9):1(in Chinese).
赵成志, 魏双胜, 高亚龙,等. 超临界与超超临界汽轮机耐热钢的研究进展[J]. 钢铁研究学报,2007, 19(9):1.
10 Viswanathan R, Purgert R, Goodstine S, et al. US program on materials technology for ultrasupercritical coal-fired boilers[C]// International Conference on Advances in Materials Technology for Fossil Power Plants.2008.
11 Lin Fusheng, Xie Xishan, Zhao Shuangqun, et al. Selection of super alloys for super-heater tubes of domestic 700 ℃ A-USC boilers[J].Chin J Soc Power Eng,2011,31(12):960(in Chinese).
林富生, 谢锡善, 赵双群,等. 我国700 ℃超超临界锅炉过热器管用高温合金选材探讨[J]. 动力工程学报, 2011,31(12):960.
12 Zhang Yanping, Cai Xiaoyan, Huang Shuhong. Research and deve-lopment status of materials for ultra supercritical coal-fired generating units at 700 ℃[J]. Electric Power,2012,45(2):16(in Chinese).
张燕平, 蔡小燕, 黄树红. 700 ℃超超临界燃煤发电机组材料研发现状[J]. 中国电力,2012,45(2):16.
13 杨富. 完善600 ℃、开发700 ℃超超临界机组用国产新型耐热钢[C]// 电站金属材料学术年会.2011.
14 Zhong Z H, Gu Y F, Yuan Y, et al. A new wrought Ni-Fe-base superalloy for advanced ultra-supercritical power plant applications beyond 700 ℃ [J]. Mater Lett,2013,109:38.
15 Zhao Xinbao, Dang Yingying, Yin Hongfei, et al. Effect of heat treatment on the microstructure of a Ni-Fe based superalloy for advanced ultra-supercritical power plant applications[J]. Progress Nat Sci: Mater Int,2016,26:204.
16 Nameless. Sandvik material technology company Sandvik Sanicro25 steel[J].China Stainless,2009(2):44(in Chinese).
佚名. Sandvik材料技术公司的Sandvik Sanicro25钢[J]. 不锈,2009(2):44.
17 Rautio R, Bruce S. Alloy for ultrasupercritical coal fired boilers[J]. Adv Mater Processes,2008,166(4):35.
18 Ha V T, Jung W S. Evolution of precipitate phases during long-term isothermal aging at 1083 K (810 ℃) in a new precipitation-streng-thened heat-resistant austenitic stainless steel[J]. Metall Mater Trans Part A,2012, 43(43):3366.
19 Farooq M, Sandström R, Tassa O. Precipitation hardening and other contributions to the creep strength of an 23Cr25NiWCuCo austenitic stainless steel[J]. Mater Technol,2013.
20 Intiso L, Johansson L G, Halvarsson M. Oxidation behaviour of Sanicro 25 in CO2 and H2O-rich environments[J]. Electrochem Soc,2012,77:209.
21 侯淑芳, 张周博. 时效温度和时效时间对Sanicro25组织性能的影响[C]// 中国电机工程学会金属材料专委会学术年会.2015.
22 Zhang Xian. Properties of austenitic heat-resistant steel Sanicro25 for ultra-supercritical boilers[J].Power Equipment,2015,29(6):439(in Chinese).
张显. 超超临界锅炉用奥氏体耐热钢Sanicro25的性能[J]. 发电设备,2015,29(6):439.
23 Zhao B, Bao H S, Li L. Hot deformation behavior of Sanicro25 steel[J]. Hot Work Technol,2014,43(10):26(in Chinese).
赵博,包汉生,李莉.Sanicro25钢热变形行为的研究[J].热加工工艺,2014,43(10):26.
24 Lai Xianhong, Yang Hongying.The performance of Sanicro25 austenitic heat resistant steel pipe [J]. Eastern Boiler,2012(4):28(in Chinese).
赖仙红, 杨红英. Sanicro25奥氏体耐热钢管性能简述[J]. 东方锅炉,2012(4):28.
25 García F L, Chyrkin A, Hüttel T, et al. Oxide scale formation and subsurface phase transformations during long-term steam exposure of the cobalt base alloy 25[J]. Mater Corros,2012,63(10):878.
26 Zhao B, Bao H S, Liu Z D, et al. Thermodynamic calculation and analysis on precipitated phases in Sanicro25 heat resistant steel[J]. Mater Rev,2012,26(S2):174(in Chinese).
赵博,包汉生,刘正东,等.Sanicro25耐热钢中析出相的热力学计算与平衡相分析[J].材料导报,2012,26(专辑20):174.
27 Chi Chengyu, Yu Honghu, Dong Jianxin, et al. Aging hardening of Cu rich nano precipitates in 18Cr9Ni3CuNbN austenitic heat resistant steel [J]. J Heat Treatment,2011,32(4):58(in Chinese).
迟成宇, 于鸿壶, 董建新,等. 富铜纳米析出相在18Cr9Ni3CuNbN奥氏体耐热钢中的时效强化[J]. 材料热处理学报,2011,32(4):58.
28 Zheng Leigang, Hu Xiaoqiang, Kang Xiuhong, et al. Characteristics of precipitation of M23C6 type carbides in Mn-N-Cr austenitic heat resistant steel and its influence on the toughness and plasticity [J]. Chinese J Metals,2013,49(9):1081(in Chinese).
郑雷刚, 胡小强, 康秀红,等. Cr-Mn-N奥氏体耐热钢中M23C6型碳化物析出特征及其对韧塑性的影响[J]. 金属学报,2013,49(9):1081.
29 Zhao Bo.Effect of W content on microstructure and properties of San-icro25 steel [D]. Kunming:Kunming University of Science and Technology,2013.
赵博. W含量对Sanicro25钢组织和性能的影响[D]. 昆明:昆明理工大学,2013.
30 Peng B, Zhang H, Hong J, et al. The evolution of precipitates of 22Cr-25Ni-Mo-Nb-N heat-resistant austenitic steel in long-term creep[J]. Mater Sci Eng A,2010,527(16):4424.
31 Rutkowski B, Gil A, Czyrska-Filemonowicz A. Microstructure and chemical composition of the oxide scale formed on the Sanicro25 steel tubes after fireside corrosion[J]. Corros Sci,2015,102(2016):373.
32 Tassa O, Matera S, Sandstrom R, et al. Microstructure evolution after long term high temperature exposure of 22-25Cr austenitic stainless steels[C]// Liege Confrence: Materials for Advanced Po-wer Engineering. 2014.
33 Shim J H, Kozeschnik E, Jung W S, et al. Numerical simulation of long-term precipitate evolution in austenitic heat-resistant steels[J]. Calphad-computer Coupling Phase Diagrams Thermochem,2010, 34(1):105.
34 Iseda A, Okada H, Semba H, et al. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers[J]. Energy Mater Mater Sci Eng Energy Systems,2007, 2(4):199.
35 Rautio R,Bruce S. Sandvik Sanicro 25: A new material for ultrasupercritical coal fired boilers[J]. Sandvik Mater Technol,2004,10:25.
36 Peng Zhifang, Ren Wen, Yang Chao, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service[J]. Chinese J Me-tals, 2015(11):1325(in Chinese).
彭志方, 任文, 杨超,等. HR3C钢运行过热器管的脆化与晶界M23-C6相参量演化的关系[J]. 金属学报, 2015(11):1325.
37 Li Xinmei, Zhang Zhongwen, Du Baoshuai, et al. Microstructure and impact toughness of HR3C steel after aging at 600℃[J]. Mater Mechan Eng,2014,38(7):95(in Chinese).
李新梅, 张忠文, 杜宝帅,等. 600 ℃时效后HR3C钢的显微组织和冲击韧性[J]. 机械工程材料, 2014(7):95.
38 Wang J, Zhou L, Sheng L, et al. The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure[J]. Mater Des,2012, 39(39):55.
39 Yan J, Gu Y, Sun F, et al. Evolution of microstructure and mecha-nical properties of a 25Cr-20Ni heat resistant alloy after long-term service[J]. Mater Sci Eng A,2016,675:289.
40 Liu Junjian, Chen Guohong, Wang Jiaqing, et al. Effect of aging treatment on microstructure and mechanical properties of HR3C steel[J]. J Hefei University of Technology,2011,34(1):47(in Chinese).
刘俊建, 陈国宏, 王家庆,等. 时效热处理对HR3C钢组织结构及力学性能的影响[J]. 合肥工业大学学报,2011,34(1):47.
41 Calmunger M, Chai G, Johansson S, et al. Creep and fatigue inte-raction behavior in sanicro 25 heat resistant austenitic stainless steel[J]. Trans Indian Institute Metals,2015,69(2):1.
42 Zurek J, Yang S, Lin D, et al. Microstructural stability and oxidation behavior of Sanicro 25 during long-term steam exposure in the temperature range 600-750 ℃[J]. Mater Corros,2015,66(4):315.
43 Huang Zhuping, Hu Zhengfei, Wang Qijiang, et al. Creep rupture property and fracture behavior of HR3C heat-resistant steel at 650 ℃[J]. J Heat Treatment,2013,34(11):61(in Chinese).
黄竹平, 胡正飞, 王起江,等. HR3C耐热钢650℃持久性能与断裂行为[J]. 材料热处理学报,2013, 34(11):61.
44 Chai G, Boström M, Olaison M, et al. Creep and LCF behaviors of newly developed advanced heat resistant austenitic stainless steel for A-USC ☆[J]. Procedia Eng,2013,55(12):232.
45 Yin Z,Cai H,Liu H G.Performance on new heat-resistant steel HR3C in the ultra-supercritical units after service at high temperature for 25000 hours[J].Proceed CSEE,2011,31(29):103(in Chinese)
殷尊, 蔡晖, 刘鸿国. 新型耐热钢HR3C在超超临界机组高温服役25000 h后的性能研究[J]. 中国电机工程学报,2011,31(29):103.
46 Polák J, PetrášR, Heczko M, et al. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature[J]. Mater Sci Eng A,2014,615:175.
47 Chen Liang, Lu Zhengran. Study on welding process performance of Sanicro25 new material of high-temperature superheater and reheater for USC boiler with 700 ℃[J].Boiler Technol,2015,46(5):49(in Chinese)
陈亮, 卢征然. 700 ℃超超临界锅炉高温过热器再热器用Sanicro25新材料焊接工艺研究[J]. 锅炉技术, 2015,46(5):49.
48 Jamrozik, Przemysław, Sozańska, et al. High-temperature corrosion resistance of welded joints in Sanicro25 steel[J]. Solid State Phenomena,2015,227:401.
49 Kotowicz J, Michalski S. Thermodynamic and economic analysis of a supercritical and an ultracritical oxy-type power plant without and with waste heat recovery[J]. Appl Energy,2016,179:806.
50 Intiso L, Johansson L G, Canovic S, et al. Oxidation behaviour Sa-nicro25 (42Fe22Cr25NiWCuNbN) in O2/H2O mixture at 600 ℃[J]. Oxid Met,2012,77(77):209.
51 Intiso L, Johansson L G, Svensson J E, et al. Oxidation of Sanicro25 (42Fe22Cr25NiWCuNbN) in O2, and O2+H2O environments at 600—750 ℃[J]. Oxid Met,2015,83(3-4):367.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed