Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21100220-6    
  无机非金属及其复合材料 |
掺再生微粉的城墙内芯土渗透性和强度研究
王晓娇1, 戚承志1, 周理安1, 李太行2, 陈昊祥1, 王泽帆1, 马啸宇1, 封焱杰1, 罗伊1
1 北京建筑大学土木与交通工程学院,北京100044
2 北京国文信文物保护有限公司,北京100000
Study on Permeability and Strength of Core Soil in City Wall Mixed with Regenerated Micro Powder
WANG Xiaojiao1, QI Chengzhi1, ZHOU Li'an1, LI Taihang2, CHEN Haoxiang1, WANG Zefan1, MA Xiaoyu1, FENG Yanjie1, LUO Yi1
1 School of Civil and Traffic Engineering,Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Beijing Guo Wen Xin Cultural Rolics Protection Co., Ltd., Beijing 100000, China
下载:  全 文 ( PDF ) ( 6738KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究再生微粉的掺加对城墙内芯土渗透性和强度的影响,实现建筑垃圾的利用和可持续发展目标,将废弃的城墙旧砖进行磨制,按照10%、20%、30%(质量分数)的比例加入到城墙内芯土中,通过控制围压和水头的变化进行相关的渗透试验,探究不同围压和水头条件下有利于城墙内芯土抗渗性能的合理的再生微粉掺入量,并探究了以上再生微粉不同掺量下城墙的无侧限抗压强度的变化。试验表明,围压对于城墙内芯土的渗透系数影响显著,水头变化对于城墙内芯土的渗透系数影响不大,城墙内芯土的渗透系数主要随着微粉掺量增加而增大。土体的无侧限抗压强度在含水率为12.1%时,随着再生微粉掺量增加呈先增加后降低的趋势,在掺量为15%时达到最大值。综上,再生微粉掺量为15%时,土体的抗渗能力降低不显著,而且可以保证内芯土具有较高强度,因此微粉掺量控制在15%左右对内芯土的性能保持是较有利的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓娇
戚承志
周理安
李太行
陈昊祥
王泽帆
马啸宇
封焱杰
罗伊
关键词:  城墙  再生微粉  渗透  围压  水头  无侧限抗压强度    
Abstract: In order to explore the effect of recycled micro powder on the permeability and strength of the inner core soil of the city wall, and achieve the goal of utilization and sustainable development of construction waste, the abandoned old bricks of the city wall were ground and added to inner core soil of the city wall with the proportion of 10%, 20% and 30% of mass. The permeability tests were carried out by controlling the change of confining pressure and water head. To explore the reasonable content of recycled micro-powder which is beneficial to the permeability of the inner core soil under different confining pressure and water head, the variation of unconfined compressive strength under different dosage of recycled micro-powder was investigated. The experimental results show that the confining pressure has a significant effect, while the change of water head has little on the permeability coefficient of the core soil. The permeability coefficient of the core soil increases with the increase of the recycled micro-powder content. When the moisture content is 12.1%, the unconfined compressive strength of soil increases first and then decreases with the increase of recycled micro-powder content, and reaches the maximum value at the content of 15%. In conclusion, when the recycled micro-powder content is 15%, the anti-permeability ability of soil is not significantly reduced, and the inner core soil can be guaranteed to have a high strength. Therefore, it is beneficial to maintain the performance of the core soil to control the dosage of recycled micro-powder at about 15%.
Key words:  city wall    recycled micro-powder    permeation    confining    pressure head    unconfined compressive strength
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TU521  
基金资助: 国家自然科学基金(51774018;51608029);北京建筑大学2021年研究生创新项目资助(PG2021007);北京建筑大学博士研究生科研能力提升项目(DG2021003)
作者简介:  王晓娇,2018年6月于河北农业大学现代科技学院获得工学学士学位,现为北京建筑大学土木与交通工程学院硕士研究生,在戚承志教授的指导下进行研究,目前主要研究领域为岩土以及建筑遗产保护。
戚承志,北京建筑大学土木与交通工程学院教授、博士研究生导师。1986年解放军理工大学工程兵工程学院防护工程专业本科毕业;1992年圣彼得堡国立建筑大学地球物理专业副博士毕业,1999年到北京建筑大学工作至今,2007年莫斯科国立大学数理科学专业正博士毕业。目前主要从事岩石力学、地下结构抗震等方面研究。发表论文200多篇,包括Physical Mesomechanics,International Journal of Impact Engineering,Journal of Rock Mechanics and geotechnical Engineering,Journal of Mining Science,Journal of the Mechanical Behavior of Materials等。
引用本文:    
王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
WANG Xiaojiao, QI Chengzhi, ZHOU Li'an, LI Taihang, CHEN Haoxiang, WANG Zefan, MA Xiaoyu, FENG Yanjie, LUO Yi. Study on Permeability and Strength of Core Soil in City Wall Mixed with Regenerated Micro Powder. Materials Reports, 2022, 36(Z1): 21100220-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21100220
1 张曦沐.明长城居庸关研究.硕士学位论文,天津大学,2005.
2 景爱.长城,北京学苑出版社,2008.
3 李德仲.北京文博,2000(3),92.
4 张丹丹,王兵.遗产与保护研究,2018, 3(11),155.
5 刘松茯,陈思.建筑学报,2017(2),11.
6 冯楠,王蕙贞,王肃,等.文物保护与考古科学,2012, 24(2),26.
7 张晓东,张斌.敦煌研究,2009(6),87.
8 蒙吉军,严汾.北京大学学报(自然科学版),2009, 45(2),311.
9 罗哲文.中国地名,2013(4),52.
10 李太行,戚承志,王晓娇,等.材料导报,2020, 34(Z1),220.
11 崔晨.某城墙土遗址病害及改性黄土修复后稳定性分析.硕士学位论文,西安理工大学,2019.
12 刘士雨,俞缙,韩亮,等.岩石力学与工程学报,2019, 38(8), 1718.
13 陈平,杨瑜瑞,郝宏伟,等.建筑材料学报,2014,17(3),430.
14 任晓茹,张景科,王南,等.材料科学与工程学报,2017, 35(1),62.
15 崔彪,傅峥嵘,刘效彬,等.文物保护与考古科学,2015, 27(3),8.
16 李航航,李辉,张吾渝,等.青海大学学报,2021, 39(2),49.
17 曾庆杰,李悦,黎金杭,等.长江科学院院报,DOI:10.11988/ckyyb.20201084.
18 王毅红,刘芳,刘亮,等.土木建筑与环境工程,2016, 38(6),32.
19 Ulrikh D V, Butakova M D.Procedia Engineering,2016,150,1510.
20 苗苗.明蓟镇长城沿线关城聚落研究.硕士学位论文,天津大学,2004.
21 胡清波,梁海安,等.长江科学院院报,2021, 38(2),107.
22 唐芸黎,黄英,贺登芳,等.中国水运,2021(1),159.
[1] 张舒婷, 黄向玫, 赵栋烨, 洪志浩, 曾晓晓, 才来中. 含TiN阻氚过渡层新型第一壁的氘渗透实验研究[J]. 材料导报, 2022, 36(Z1): 22030154-5.
[2] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[3] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[4] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[5] 王一名, 常立君, 李滢. 废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究[J]. 材料导报, 2021, 35(z2): 268-274.
[6] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[7] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[8] 姚子成, 肖方锟, 刘兆峰, 张大鹏, 朱桂茹. 石墨炭纳米颗粒改性聚砜支撑层制备正渗透复合膜[J]. 材料导报, 2021, 35(8): 8196-8200.
[9] 栗培龙, 裴仪, 胡晋川, 胡伟. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报, 2021, 35(22): 22092-22097.
[10] 张诗洋, 朋小康, 廖松义, 闵永刚. 用于分离重金属离子的聚苯胺改性氧化石墨烯复合膜[J]. 材料导报, 2021, 35(18): 18030-18034.
[11] 刘娟红, 马虹波, 段品佳, 周昱程, 郭子栋. 硫酸盐干湿循环环境下超深井井壁混凝土抗腐蚀性能[J]. 材料导报, 2021, 35(12): 12081-12086.
[12] 石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
[13] 刘晓琦, 张廷安, 刘燕, 赵昕昕. 壳聚糖膜在渗透汽化中的研究进展[J]. 材料导报, 2021, 35(1): 1224-1231.
[14] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[15] 卞立波, 陶志. 不同吸附性粉体对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 246-249.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed