Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21030180-8    https://doi.org/10.11896/cldb.21030180
  金属与金属基复合材料 |
多孔吸声材料的吸声性能预测及吸声模型研究进展
梁李斯1, 郭文龙1, 马洪月2, 弥晗3, 张宇1, 米嘉毓1, 李林波1,*
1 西安建筑科技大学冶金工程学院,西安 710055
2 陕西省冶金工程技术研究中心,西安 710055
3 陕西省黄金与资源重点实验室,西安 710055
Research Progress of Sound Absorption Performance Prediction and Sound Absorption Model of Porous Sound-absorbing Materials
LIANG Lisi1, GUO Wenlong1, MA Hongyue2, MI Han3, ZHANG Yu1, MI Jiayu1, LI Linbo1,*
1 College of Metallurgical Engineering, Xi'an University of Architecture and Technology,Xi'an 710055, China
2 Shaanxi Metallurgical Engineering Technology Research Center, Xi'an 710055, China
3 Shaanxi Provincial Key Laboratory of Goldand Resources, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 9788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔材料作为吸声材料可降低噪音污染对人们生活、工作、学习的危害,如何设计吸声性能更加优异的多孔吸声材料成为研究者们日益关注的问题。而仿真模拟技术可以在理论上得到性能最优的多孔吸声材料的结构参数,有效地为设计性能优异的多孔吸声材料提供理论依据和减少不必要的实验过程。
由于仿真模拟技术存在多样化,选择合适的仿真模拟技术预测多孔吸声材料吸声系数极其重要。近年来,各种仿真模拟技术被广泛应用于多孔吸声材料吸声系数的预测,但尚无各种仿真模拟技术预测效果优劣性的系统比较。
本文主要探讨了四种非线性神经网络预测多孔吸声材料吸声系数的方法。就预测过程及结果来说,径向基函数神经网络所需的样本数量更少,预测精度也较高。优化算法在理论上可以解决其他神经网络所需样本数量大的问题,具体的做法是在建立神经网络模型之前,利用优化算法对少量的样本集进行处理得到最佳的训练样本和测试样本,然后代入神经网络模型中进行模拟预测。另外,探讨了三种经典理论模型经验公式计算多孔吸声材料吸声系数的方法,其中Johnson-Champoux-Allard模型误差较小。虽然Johnson-Champoux-Allard模型是一种五参数模型经验公式,但影响多孔吸声材料吸声系数的影响因素众多,不止五种。量纲分析是建立数学模型的重要方法之一,通过量纲化可以将复杂的数学物理问题转化为精确的数学模型公式。因此,可以通过量纲分析的方法建立所有影响因素与多孔吸声材料吸声系数之间的关系式,从而使通过模型公式计算得到的吸声系数误差更小。本文还探讨了二维和三维等效模型模拟仿真多孔吸声材料各项性能的方法。相比于二维模型,三维模型虽然建模过程复杂,但能够更加直观准确地对材料的各项性能进行模拟仿真,并且材料的三维建模数据可为后续的生产制备提供依据。
本文简要介绍了吸声材料的分类及其原理,分别对三种方法中的九种仿真模拟技术进行了介绍,并总结了每种方法中性能最优的技术,以期为模拟仿真技术在多孔吸声材料吸声系数的预测提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁李斯
郭文龙
马洪月
弥晗
张宇
米嘉毓
李林波
关键词:  多孔吸声材料  非线性神经网络  等效模型  经验公式  吸声性能    
Abstract: Porous materials have been used as sound-absorbing materials to reduce the impact of noise pollution on people's lives, work and studies, which raises a major research concern about how to design porous sound-absorbing materials with better sound absorption performance. Simulation technology can theoretically determine the structural parameters of porous sound-absorbing materials with optimal performance, effectively providing a theoretical foundation for designing porous sound-absorbing materials with excellent performance while reducing unnecessary experimental processes.
Due to the variety of simulation techniques available, it is crucial to choose the appropriate one for predicting the sound absorption coefficient of porous acoustic materials. Recently, various simulation techniques have been used for predicting the sound absorption coefficient of porous acoustic materials, but no systematic evaluation of the benefits and drawbacks of each simulation technique's prediction effect exists.
In this review, four nonlinear neural networks to predict the sound absorption coefficient of porous acoustic materials are discussed. The radial basis function neural network uses fewer samples and offers a higher prediction accuracy in terms of the prediction process and results. Further, an optimization algorithm can theoretically solve the problem of other neural networks requiring several samples; the optimization algorithm is used to process a small set of samples to obtain the best training and test samples before building the neural network model and then substituting them into the neural network model for simulation prediction. What's more, three classical theoretical models of empirical formulations for estimating the absorption coefficient of porous acoustic materials are discussed, among which the Johnson-Champoux-Allard model exhibits little error. Although the Johnson-Champoux-Allard model is a five-parameter model empirical formula, several factors (more than five) influence the absorption coefficient of porous sound-absorbing materials. Dimensional analysis, one of the important methods for establishing mathematical models, can transform complex mathematical physical problems into accurate mathematical model formulas using quantiles. Therefore, an equation relating all the influencing factors and the absorption coefficient of porous sound-absorbing materials can be established using the method of dimensional analysis, which reduces the absorption coefficient error calculated from the model equation. Two- and three-dimensional equivalent models are proposed to simulate the properties of porous acoustic materials. Although the modeling process is complicated, the three-dimensional model can simulate the properties of the material more intuitively and accurately than the two-dimensional model, and it can provide the basis for subsequent production and preparation with the three-dimensional modeling data of the material.
In this review, the classification of sound-absorbing materials and their principles, as well as nine simulation techniques in three methods, are briefly introduced. The technique with the best performance in each method is presented to provide a reference for simulation-based absorption coefficient prediction of porous sound-absorbing materials.
Key words:  porous sound-absorbing material    nonlinear neural network    equivalent model    empirical formula    sound absorption property
发布日期:  2022-12-09
ZTFLH:  TB34  
  TB535  
基金资助: 陕西省教育厅重点实验室项目(Z20200151);国家自然科学基金青年项目(51404187)
通讯作者:  *yj-lilinbo@xauat.edu.cn   
作者简介:  梁李斯,西安建筑科技大学冶金工程学院副教授、硕士研究生导师。2006年本科毕业于东北师范大学环境科学学院,2011年在东北大学有色金属冶金专业取得博士学位。2011年至今在西安建筑科技大学冶金工程学院从事泡沫金属及吸声材料的研究。近年来,在泡沫金属及吸声材料领域发表论文20篇,包括Applied AcousticsNanoscience and Nanotechnology LettersMaterials Science Forum、《材料导报》《功能材料》《有色金属》等。
李林波,西安建筑科技大学冶金工程学院院长、教授、博士研究生导师,中国有色金属学会环境保护学术委员会委员、全国安全生产标准化技术委员会第一届冶金有色安全分技术委员会、陕西省有色金属学会理事。1995年本科毕业于西安建筑科技大学冶金学院,2011年在西安建筑科技大学材料学专业取得博士学位。1998年至今担任西安建筑科技大学冶金工程专业教师。主要从事冶金新工艺及理论研究、冶金过程资源综合利用与环境保护、冶金过程清洁生产技术、电化学冶金、冶金过程计算等方面的研究。发表学术论文40余篇,编著教材4部,授权发明专利10件。
引用本文:    
梁李斯, 郭文龙, 马洪月, 弥晗, 张宇, 米嘉毓, 李林波. 多孔吸声材料的吸声性能预测及吸声模型研究进展[J]. 材料导报, 2022, 36(23): 21030180-8.
LIANG Lisi, GUO Wenlong, MA Hongyue, MI Han, ZHANG Yu, MI Jiayu, LI Linbo. Research Progress of Sound Absorption Performance Prediction and Sound Absorption Model of Porous Sound-absorbing Materials. Materials Reports, 2022, 36(23): 21030180-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030180  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21030180
1 Jorge P A, Malcolm J C. Sound and Vibration, 2010, 44(7), 12.
2 Sun F S, Li L J, Guang X Y, et al. Applied Acoustics, 2020, 165, 107299.
3 Liang L S, Guo W L, Zhang Y C, et al. Journal of Functional Materials, 2020, 51(5), 05013(in Chinese).
梁李斯, 郭文龙, 张宇, 等. 功能材料, 2020, 51(5), 05013.
4 Liang L S, Guo W L, Zhang Y, et al. Applied Acoustics, 2020, 170, 107505.
5 Guan D, Wu J H, Wu J L, et al. Applied Acoustics, 2015, 87, 103.
6 Lin M D, Tsai K T, Su B S. Applied Acoustics, 2009, 70(1), 31.
7 Liu J L, Bao W, Shi L, et al. Applied Acoustics, 2014, 76, 128.
8 Chen M. MATLAB neural network principle and case refinement, Tsinghua University Press, 2013(in Chinese).
陈明. MATLAB神经网络原理与实例精解. 清华大学出版社, 2013.
9 Wen Z, Sun H K. MATLAB intelligent algorithm, Tsinghua University Press, 2017(in Chinese).
温正, 孙华克. MATLAB智能算法. 清华大学出版社, 2017.
10 Wang X C, Shi F, Yu L, et al. MATLAB neural network analysis of 43 cases, Beijing University of Aeronautics and Astronautics Press, 2013(in Chinese).
王小川, 史峰, 郁磊等. MATLAB神经网络43个案例分析, 北京航空航天大学出版社, 2013.
11 Cai Z N, Li X H, Gai X L, et al. Applied Acoustics, 2020, 170, 107483.
12 Berardi U, Iannace G. Materials and Engineering, 2017, 225, 012082.
13 Chen W J, Liu S T. Noise and Vibration Control, 2012, 32(3), 177(In Chinese).
陈文炯, 刘书田. 噪声与振动控制工程, 2012, 32(3), 177.
14 Navacerrada M A, Fernandez P, Diaz C. Applied Acoustics, 2013, 74(4), 496.
15 Lu T J, Chen F, He D P. Journal of the Acoustical Society of America, 2000, 108(4), 1697.
16 Liang L S. Sound absorption and noise reduction performance of closed-cell aluminum foam and its application, Metallurgical Industry Press, 2018 (in Chinese).
梁李斯. 闭孔泡沫铝吸声降噪性能及其应用, 冶金工业出版社, 2018.
17 Ma D Y. Noise control, Science Press, 1987 (in Chinese).
马大猷. 噪声控制学, 科学出版社, 1987.
18 Liu J L, Zuo B Q, Gao W D. Acoustics Australia, 2015, 43(1), 129.
19 Guan D, Jing L, Gong J J, et al. Noise Control Engineering Journal, 2018, 66(5), 424.
20 Giuseppe C, Gino I, Jessica P, et al. Applied Acoustics, 2020, 169, 107472.
21 Ju H J, Sung S Y, Yeon J K. Applied Acoustics, 2020, 169, 107476.
22 Wang F, Chen Z F, Wu C, et al. The Journal of the Textile Institute, 2020, 111(7), 1008.
23 Wang S S, Xiang Z H, Lan G L, et al. Technical Textiles, 2015, 33(3), 20(in Chinese).
王双闪, 相增辉, 兰桂柳, 等. 产业用纺织品, 2015, 33(3), 20.
24 Shi L. Study on the sound absorption property for multi-layer composite nonwovens and the prediction by using neutral network model. Master's Thesis, Soochow University, China, 2013(in Chinese).
史磊. 多层复合非织造材料吸声性能及其神经网络预测模型研究. 硕士学位论文. 苏州大学, 2013.
25 Jean F A, Yvan C. The Journal of the Acoustical Society of America, 1992, 91(6), 3346.
26 Ebrahim T, Ali T, Mohammad F, et al. Acoustics Australia, 2019, 47(1), 67.
27 Ebrahim T, Parham S, Umberto B, et al. Building and Environment, 2020, 180, 107087.
28 Kunikazu H. Applied Acoustics, 2020, 164, 107222.
29 Zhou B, Zhang J G, Li X, et al. Materials, 2020, 13(8), 1936.
30 Carbajo J, Ramis J, Godinho L, et al. Applied Acoustics, 2018, 133, 1.
31 Ebrahim T, Ali K, Abdolreza O, et al. Building and Environment, 2019, 161, 106274.
32 Ebrahim T, Ali K, Ahmad J J, et al. Heliyon, 2019, 5(6), e01977.
33 Iwan P, Eki M, Azma P, et al. Applied Acoustics, 2020, 157, 107008.
34 Ji Y J, Chen S M, Zhu W B. Applied Acoustics, 2020, 157, 107010.
35 Hasina M, Mohammad H F, Mohd Z N, et al. Applied Acoustics, 2017, 126, 58.
36 Sagar D, Harshavardhan R, Sripriya R. Materials and Design, 2019, 175, 107830.
37 Manish R, Shahab F, Naresh T. Applied Acoustics, 2020, 169, 107490.
38 Parham S, Meghdad N. Journal of Sound and Vibration, 2020, 485, 115607.
39 Seyed E S, Hasan A M, Seyyed M M, et al. Journal of Industrial Textiles, 2020, 51(5), 8601s.
40 Nirmala H B, Prakash S. Materials Today: Proceedings, 2021, 43, 1545.
41 Katja S, Stefanie P, Doris R B, et al. Computational Materials Science, 2006, 38, 56.
42 MiKi Y. Journal of Japan(E), 1990, 11(1), 19.
43 Boris M, Jonas B, Jeong C H, et al. Applied Acoustics, 2020, 157, 106884.
44 Chen C J, Bi M, Tang J, et al. Materials Research Express, 2019, 6(9), 095108.
45 Yang T, Ferina S, Kirill V H, et al. Textile Research Journal, 2019, 89(16), 3342.
46 Liu X W, Xiong X Z, Pang J X. Applied Acoustics, 2021, 179, 108060.
47 Ma G. Formation and acoustic simulation of polyimide foams. Master's Thesis. Hebei University of Science and Technology, China, 2015(in Chinese).
马钢. 聚酰亚胺泡沫的形成及声学模拟. 硕士学位论文, 河北科技大学, 2015.
48 Du X W, Chen T N, Wang X P, et al. In: Proceedings of the 27th National Conference on Vibration and Noise Applications. Harbin, 2016, pp.4.
49 Cosmin S R, Jozef B, Tomáš K, et al. Composites Part B, 2019, 171, 361.
50 Hangai Y, Yamaguchi R, Takahashi S, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2013, 44A(4), 1880.
51 Ramírez J F, Cardona M, Velez J A, et al. Procedia Materials Science, 2014, 4, 227.
[1] 于长帅, 罗忠, 骆海涛, 何凤霞. 多孔吸声材料声学模型及其特征参数测试方法研究进展[J]. 材料导报, 2022, 36(4): 20110035-11.
[2] 于长帅, 罗忠, 骆海涛, 何凤霞. 分层多孔材料声学建模和吸声性能预测方法研究[J]. 材料导报, 2022, 36(16): 21040182-5.
[3] 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019, 33(21): 3669-3677.
[4] 李建雄, 贾红玉, 陈纯锴, 赵晓明. 基于各向异性织物的电磁屏蔽性能仿真计算[J]. 材料导报, 2018, 32(18): 3235-3238.
[5] 赵伦, 何晓聪, 邢保英, 张先炼, 邰加琪. 铝合金自冲铆接微动行为研究*[J]. 《材料导报》期刊社, 2017, 31(14): 105-108.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed