Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20080133-7    https://doi.org/10.11896/cldb.20080133
  无机非金属及其复合材料 |
水系锌离子电池的最新研究进展
孙晴, 高筠*
华北理工大学化学工程学院,河北 唐山 063210
Latest Research Progress on Aqueous Zinc Ion Battery
SUN Qing, GAO Yun*
School of Chemical Engineering, North China University of Science and Technology,Tangshan 063210, Hebei, China
下载:  全 文 ( PDF ) ( 3015KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电化学储能具有能量密度高、响应时间快、维护成本低、安装灵活方便等特点,是未来储能技术的热点发展方向。近年来,锌离子电池由于其成本低廉、比容量高等优点,具有良好的发展前景。水系锌离子电池正极主要有钒基化合物、锰基化合物和普鲁士蓝类似物;负极主要为锌负极;电解液包括水凝胶电解液、离子液、盐包水电解液和具有添加物的电解液。
然而,对正极材料而言,锰基化合物中的Mn2+溶解、钒基化合物放电电压过低、普鲁士蓝类似物比容量较低都影响了锌离子电池的性能。锌电极作为锌离子电池负极面临的挑战主要包括:(1)锌枝晶生长;(2)电解液持续消耗和自放电问题;(3)不可逆副产物的产生。水系电解液在充放电过程中会发生水分解及蒸发,影响电池性能。研究者近年来致力于通过掺杂其他元素、表面涂覆与包覆等方式制备新型电极材料来改善水系锌离子电池正极,通过界面修饰、进行新型锌负极的三维结构设计以及新型电解液的设计研发来减少锌枝晶产生,同时向电解液中添加其他溶液可以拓宽电化学窗口,以得到高性能的水系锌离子电池。
目前,向正极材料中掺杂钙、镁、钴等元素和表面包覆以聚吡咯为主的高分子导电聚合物制备的新型电极材料已被成功应用。金属离子合适比例的掺杂不仅可以提高材料容量,同时也形成了有利于Zn2+脱嵌的稳定结构。对锌负极修饰如二氧化钛(TiO2)、金纳米颗粒、聚乙烯醇缩丁醛(PVB)的表面镀层,或在电解液中添加合适的添加剂,能够提高锌负极的可逆性和稳定性,抑制锌枝晶的生长。上述方法可以直接或间接地提高水系锌离子电池的循环稳定性和库仑效率。
本文首先介绍了锌离子电池概况,然后重点阐述了目前水系锌离子电池正极材料、负极材料、电解液和隔膜的研究进展,包括各方面存在的挑战及现有的解决策略,最后对水系锌离子电池电极材料、电解液和隔膜未来的发展进行了展望,为开发制备高性能水系锌离子电池提供了思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙晴
高筠
关键词:  水系  锌离子电池  锌枝晶    
Abstract: Electrochemical energy storage has the characteristics of high energy density, fast response time, low maintenance cost, flexible and convenient installation, and it is the hot development direction of energy storage technology in the future. In recent years, because of its low cost and high specific capacity, zinc ion battery has a good development prospects. The positive electrodes of aqueous zinc ion batteries are mainly vanadium-based compounds, manganese-based compounds and Prussian blue analogues; the negative electrodes are mainly zinc negative electrodes; the electrolytes include hydrogel electrolytes, ionic liquids, salt-coated electrolytes and electrolytes with additives.
However, for positive materials, the dissolution of Mn2+ in manganese compounds, the low discharge voltage of vanadium compounds and the low specific capacity of Prussian blue analogs all affect the performance of zinc ion batteries.The challenges faced by zinc electrodes as negative electrodes for zinc ion batteries include: (ⅰ) zinc dendrite growth, (ⅱ) continuous electrolyte consumption and self-discharge, (ⅲ) generation of irreversible by-products. Water decomposition and evaporation occur in the charging and discharging process of water electrolyte, which affects the performance of batteries. In recent years, researchers have been devoted to preparing new electrodes by doping other elements, surface coating and covering to improve the positive electrodes of aqueous zinc ion batteries. By modifying the interface, designing the three-dimensional structure of new zinc negative electrodes and designing and developing new electrolytes, the production of zinc dendrites can be reduced. At the same time, adding other solutions to the electrolyte can broaden the electrochemical window, so as to improve the electrochemical performance of aqueous zinc ion batteries.
At present, a new electrode material prepared by doping calcium, magnesium, cobalt and other elements into the cathode material and coating the surface with polypyrrole based polymer conductive polymer has been successfully applied. The appropriate proportion of metal ions doping can not only improve the material capacity, but also form a stable structure which is conducive to the deintercalation of Zn2+. The reversibility and stability of zinc anode can be improved and the growth of zinc dendrite can be inhibited by modifying the surface coating of titanium dioxide (TiO2), gold nanoparticles and polyvinyl butyral (PVB) or adding appropriate additives in the electrolyte. These methods can directly or indirectly improve the cycle stability and coulomb efficiency of aqueous zinc ion batteries.
This paper first introduces the general situation of zinc ion batteries, and then focuses on the research progress of cathode materials, anode materials, electrolytes and separators, including the existing challenges and existing solutions. Finally, the future development of electrode materials, electrolytes and separators for aqueous zinc ion batteries is prospected, which provides ideas for the development and preparation of high-performance aqueous zinc ion batteries.
Key words:  aqueous    zinc ion battery    zinc dendrite
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TM912  
基金资助: 河北省自然科学基金项目(E2020209183)
通讯作者:  *gaoyun@ncst.edu.cn   
作者简介:  孙晴,2019年6月毕业于河北农业大学,获得理学学士学位。现为华北理工大学硕士研究生,在高筠教授的指导下进行研究。目前主要研究领域为材料电化学。
高筠,华北理工大学化学工程学院教授,研究生学院副院长,硕士研究生导师。1995年7月毕业于河北工业大学化工系,获学士学位。1998年7月毕业于内蒙古工业大学化工系,获工学硕士学位。2007年中国矿业大学(北京)博士毕业。2012年于英国诺丁汉大学进行博士后研究。研究方向为电化学和化学工程。近年来先后主持或参与完成多项国家级和省级项目,参编著作2部。发表论文70余篇,授权发明专利3项。
引用本文:    
孙晴, 高筠. 水系锌离子电池的最新研究进展[J]. 材料导报, 2022, 36(17): 20080133-7.
SUN Qing, GAO Yun. Latest Research Progress on Aqueous Zinc Ion Battery. Materials Reports, 2022, 36(17): 20080133-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080133  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20080133
1 Zhao Y, Zhu Y, Zhang X.Infomat, 2020,2(2),237.
2 Jin Y, Zou L, Liu L, et al.Advanced Materials, 2019, 31(29), 935.
3 Chen L L, Yang Z H, Cui F, et al. Materials Chemistry Frontier, 2020,4, 213.
4 Fu Y Q, Wei Q L, Zhang G X, et al. Advanced Energy Materials, 2018, 8(26),1801445.
5 Fang G, Zhu C, Chen M, et al. Advanced Functional Materials, 2019, 29(15), 1616.
6 Sun T J, Nian Q S, Zheng S B, et al. Small, 2020,26(23), 1613.
7 Zhai X Z, Qu J, Hao S M, et al. Nano-Micro Letters, 2020,12(4), 141.
8 Guo C, Tian S, Chen B L, et al. Materials Letters, 2020,262,127180.
9 Sun M, Li D S, Wang Y F, et al. ChemElectroChem, 2019, 6(9), 2510.
10 Liu W, Liu P, Hao R, et al. ChemElectroChem, 2020, 7(5), 1166.
11 Xiao Y, Li Z, Zhao F X, et al. Chinese Journal of Power Sources, 2018, 42(10), 1504(in Chinese).
肖酉,李振,赵芳霞,等.电源技术,2018,42(10),1504.
12 Wu F, Gao X, Xu X, et al. ChemSusChem, 2020,13(6), 1537.
13 Liu W B, Dong L B, Jiang B Z, et al. Electrochimica Acta, 2019, 320,134565.
14 Ding Y C, Peng Y Q, Chen W Y, et al. Applied Surface Science, 2019, 7, 26.
15 Zhang H Z, Wang J, Liu Q Y, et al. Energy Storage Materials, 2019, 21, 154.
16 Liu Y, Hu P F, Liu H Q, et al. Materials Today Energy, 2020, 17,100431,
17 Liu Chaofeng, Zachary Neale, Zheng Jiqi, et al. Energy and Environmental Science, 2019,12(7), 2273.
18 Geng H, Cheng M, Wang B, et al. Advanced Functional Materials, 2020, 30(6), 1907684.
19 Soundharrajan V, Sambandam B, Kim S, et al.Nano Letters, 2018, 18(4), 2402.
20 Ma L, Li N, Long C, et al. Advanced Functional Materials, 2019, 29(46), 1906142.
21 Zhang Y, Wan F, Huang S, et al. Nature Communications, 2020, 11(1), 2199.
22 Lu K.Construction of advanced energy storage systems through rational design of material combination and kinetic balance. Ph.D. Thesis, Shandong University, China, 2018(in Chinese).
鹿可.基于阴阳极材料的优化匹配及机理平衡构筑高性能储能体系的研究.博士学位论文,山东大学,2018.
23 Lauren E B, Dipan K, Linda F N. Joule, 2020, 4(4), 771.
24 Ge Y.Preparation and properties of aqueous zinc ion battery cathode electrode based on cellulose/graphene composite aerogels. Ph.D. Thesis, East China University of Technology, China, 2018(in Chinese).
葛溢. 基于纤维素/石墨烯复合气凝胶的水系锌离子电池正极材料制备与性能.博士学位论文,东华理工大学,2018.
25 Zeng Y X, Lai Z Z, Han Y, et al. Advanced Materials, 2018, 30(33), 1802396.
26 Li C, Xie X, Liang S, et al. Energy & Environmental Materials, 2020, 3, 146.
27 Lan B X, Zhang W W, Luo P, et al. Materials Reports A: Review Papers, 2020, 34(7), 13068.
蓝彬栩,张文卫,罗平,等. 材料导报:综述篇, 2020, 34(7), 13068.
28 Jia H, Wang Z Q, Wang Y D, et al. Nano Energy, 2020, 70, 104523.
29 Zhao Z M, Zhao J W, Hu Z L, et al. Energy & Environmental Science, 2019,12(6), 1938.
30 Zhao K N, Wang C X, Yu Y H, et al. Advanced Materials Interfaces, 2018, 5(16), 1800848.
31 Cui M W, Xiao Y, Kang L T, et al. ACS Applied Energy Mater, 2019, 2(9), 6490.
32 Hao J N, Li X L, Zhang S L, et al. Advanced Functional Materials, 2020, 30, 2001263.
33 Cui Y H, Zhao Q H, Wu X J, et al. Angewandte Chemie, 2020, 132(38), 16737.
34 Zhang Q, Luan J, Fu L, et al. Angewandte Chemie International Edition, 2019, 58(44), 15841.
35 Naveed A, Yang H, Shao Y, et al. Advanced Materials, 2019, 31(36), 1900668.
36 He Pan, Chen Qiang, Yan Mengyu, et al. EnergyChem, 2019,1(3),100022.
37 Wu K, Huang J, Yi J, et al.Advanced Energy Materials, 2020, 10(12), 1.
38 Zhang T T, Tang Y, Fang G Z, et al. Advanced Functional Materials, 2020, 30(30), 2002711.
39 Huang S, Wan F, Bi S, et al. Angewandte Chemie International Edition, 2019, 58(13), 4313.
40 Hong Zijian,Zeeshan Ahmad,Venkatasubramanian Viswanathan. ACS Energy Letters, 2020, 5(8), 2466.
41 Kang L T, Cui M W, Jiang F Y, et al. Advanced Energy Materials, 2018, 8, 1801090.
[1] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[2] 李嘉鹏, 李威翰, 刘嘉良, 李永玲, 李飞. 透水路面制品渗透性能的研究进展[J]. 材料导报, 2020, 34(Z2): 265-268.
[3] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[4] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[5] 朱旭伟, 李波, 魏定邦, 文卫军, 周家宁. 循环堵塞-清洗对多孔沥青混合料渗水性能的影响[J]. 材料导报, 2020, 34(20): 20040-20045.
[6] 蓝彬栩, 张文卫, 罗平, 汤臣, 唐稳, 左春丽, 董仕节, 陈丽能. 水系锌离子电池负极材料的研究进展[J]. 材料导报, 2020, 34(13): 13068-13075.
[7] 曾路, 何牟, 张明华, 胡婷婷, 王淑萍, 彭小芹. 地聚物基透水混凝土的制备与性能[J]. 材料导报, 2019, 33(24): 4086-4091.
[8] 张雄, 王啸夫. 若干因素对透水砖性能影响机理的研究进展[J]. 材料导报, 2019, 33(23): 3949-3954.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed