1 Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Color Dynamic Electronic Paper Display Technology Institute, South China Institute of Advanced Optoelectronics, South China Normal University,Guangzhou 510006, China 2 Shenzhen Guohua Optoelectronics Technology Co., Ltd., Shenzhen 518110, Guangdong, China 3 Shenzhen Guohua Optoelectronics Research Institute, Shenzhen 518110, Guangdong, China
Abstract: Fluorinated polymer coatings have excellent physical properties and are widely used in the fields of microelectronics, electronic information display and various opticaldevices. In particular, fluorinated polymer films bear properties such as non-adhesiveness, highly chemical resis-tance, high stability, etc., which make it highly applicable as a hydrophobic layer material in electrowetting displays (EWD). The electrowetting (EW) is a new display driving mechanism by applying a direct voltage between a droplet and the fluorinated polymer based hydrophobic layer so that the droplet can be deformed and displaced. The properties and lifetime of the EWD device is directly related to the dielectric properties of the fluorinated polymer layer. The fluorinated polymer solution or coating is limited by narrow solvent selection range, high glass conversion temperature, low dielectric constant and easy breakdown, which hinders the development of EWD devices. To our knowledge, these have not been evaluated and reviewed. Given that electronic materials are moving towards multi-variety and high-quality development, and fluorinated polymeric material is a functional material to meet these requirements, it appears particularly important to let researchers fully understand the characteristics, synthesis methods and dielectric wetting performance of fluorinated polymer coatings, as well as the performance requirements of EWD devices upon relevant materials. This paper discusses the structural characteristics, performance and synthesis methods of fluorinated polymer hydrophobic materials, reviews the research progress of fluorinated polymer EWD in recent years, elaborates the key physicochemical properties of fluorinated polymer films, including dielectric constants, breakdown voltage, leakage current, wetting performance and their impacts on EW properties, summarizes the bottlenecks of fluorinated polymers and the application status of its coating on EWD devices, and prospects briefly its future research direction.
1 Yan L K, Kou K C, Wang Z C,et al. China Adhesives, 2008(1),56(in Chinese). 颜录科, 寇开昌, 王志超, 等. 中国胶粘剂, 2008(1),56. 2 Luo S K. Research on radiation effect of PBX fluoropolymer binder. Ph.D. Thesis, China Academy of Engineering Physics,China, 2002(in Chinese). 罗世凯.PBX氟聚合物粘结剂的辐射效应研究.博士学位论文,中国工程物理研究院北京研究生部, 2002. 3 Sohail S, Mistri E A, Khan A, et al. Sensors and Actuators A: Physical, 2016, 238, 122. 4 Ding S J, Wang P F,Zhang J Y, et al. Chinese Journal of Materials Research, 2001(2), 201(in Chinese). 丁士进,王鹏飞,张剑云,等. 材料研究学报, 2001(2), 201. 5 Seyrat E, Hayes R A. Journal of Applied Physics, 2001, 90, 1383. 6 Dhindsa M, Kuiper S, Heikenfeld J.Thin Solid Films,2011,519,3346. 7 Zhang H, Wang J B, Liang X L, et al. Optoelectronic Technology, 2013,33(3),189(in Chinese). 张涵, 王建波, 梁学磊, 等. 光电子技术,2013,33(3),189. 8 Liu H, Dharmatilleke S, Maurya D K, et al. Microsystem Technologies, 2010, 16, 449. 9 Wu H, Hayes R A, Li F, et al. Displays, 2018, 53, 47. 10 Patil Y, Ameduri B.Progress in Polymer Science, 2013, 38, 703. 11 Qian H H. Study on preparation and application of short-chain fluorinated acrylic water and oil repellent finishing agent. Master's Thesis, Jiangnan University, China,2018(in Chinese). 钱海洪. 短链含氟丙烯酸酯拒水拒油整理剂的制备及其应用研究.硕士学位论文,江南大学, 2018. 12 Fang B, Zhao Z, Li X,et al. Journal of Macromolecular Science Part A-Pure and Applied Chemistry, 2007, 44, 1235. 13 Harkins W D.Journal of Polymer Science, 1950, 5, 217. 14 Zhao M, Li H, Wen L,et al. Journal of Applied Polymer Science, 2016, 133, 1. 15 Kadimi A, Kaddami H, Ounaies Z,et al. Polymer Chemistry, 2019, 10, 5507. 16 Soules A,Ameduri B,Boutevin B,et al. Macromolecules,2010,43,4489. 17 Yuan S,Pehkonen S O,Liang B,et al. Corrosion Science,2011,53,2738. 18 Li Z,Hillmyer M A,Lodge T P. Macromolecules, 2004, 37, 8933. 19 Xu B,Yao W,Li Y, et al. Scientific Reports, 2016, 6, 1. 20 Xu B,Liu Y,Sun X, et al. ACS Applied Materials & Interfaces, 2017, 9, 16517. 21 Ran J,Ding L,Yu D, et al. Journal of Membrane Science,2018,549,631. 22 Guo Y,Liu W. Polymer Science Series B, 2016, 58, 313. 23 Zhou J,Zhang L,Ma J. Chemical Engineering Journal, 2013, 223, 8. 24 Matyjaszewski K, Xia J. Chemical Reviews, 2001, 101, 2921. 25 Matyjaszewski K, Xia J. Chemical Reviews, DOI:10.1021/cr940534g. 26 Discekici E H,Anastasaki A,Kaminker R,et al. Journal of the American Chemical Society, 2017, 139, 5939. 27 Dadashi-Silab S,Matyjaszewski K. ACS Macro Letters, 2019, 8, 1110. 28 Treat N J,Sprafke H,Kramer J W,et al. Journal of the American Chemical Society, 2014, 136, 16096. 29 Discekici E H,Pester C W,Treat N J, et al, ACS Macro Letters, 2016, 5, 258. 30 Gong H,Zhao Y,Shen X, et al. Angewandte Chemie International Edition, 2018, 57, 333. 31 Jiang K,Han S,Ma M, et al. Journal of the American Chemical Society, 2020, 142, 7108. 32 Xu Z,Tang B,Zhou H, et al. Polymer, 2020, 186, 122073. 33 Tajitsu Y,Ogura H,Chiba A, et al. Japanese Journal of Applied Physics, 1987, 26, 554. 34 Vir W. 1 Introduction to Fluoropolymers, Elsevier, Netherlands, 1950. 35 Ebnesajjad S. Introduction to fluoropolymers, Elsevier, Netherlands,2011. 36 He F,Lau S,Chan H L, et al. Advanced Materials, 2009, 21, 710. 37 Han X,Chen S,Lyu X, et al. Physical Chemistry Chemical Physics, 2018, 20, 2826. 38 Wang Y,Zhou X,Chen Q, et al, IEEE Transactions on Dielectrics & Electrical Insulation, 2010, 17, 1036. 39 Liu J G, Shang Y M, Fan L, et al. Acta Polymerica Sinica, 2003, 8(4),565(in Chinese). 刘金刚,尚玉明, 范琳, 等. 高分子学报, 2003, 8(4),565. 40 Huang X, Sun B, Zhu Y, et al. Progress in Materials Science, 2019, 100, 187. 41 Ladhar A, Arous M, Kaddami H, et al. Journal of Molecular Liquids, 2015, 211, 792. 42 Thünemann A F,Schnöller U,Nuyken O, et al. Macromolecules, 2000, 33, 5665. 43 Thünemann A F. Langmuir, 2000, 16, 824. 44 Hui M H,Blunt M J. The Journal of Physical Chemistry B,2000,104,3833. 45 Young T. Philosophical Transactions-Royal Society London,1805,95,65. 46 Wenzel R N. Industrial & Engineering Chemistry Research,1936,28,988. 47 Patankar N A. Langmuir, 2003, 19, 1249. 48 Yoshimitsu Z,Nakajima A,Watanabe T, et al. Langmuir,2002,18,5818. 49 Brandon S,Marmur A. Journal of Colloid and Interface Science, 1996, 183, 351. 50 Tavana H,Jehnichen D,Grundke K, et al. Advances in Colloid and Interface Science, 2007, 134, 236. 51 Honda K,Morita M,Otsuka H, et al. Macromolecules, 2005, 38, 5699. 52 Saïdi S,Guittard F,Guimon C, et al. Journal of Polymer Science Part A-Polymer Chemistry, 2005, 43, 3737. 53 Caillier L, de Givenchy E T, Géribaldi S, et al. Journal of Materials Chemistry, 2008, 18, 5382. 54 Tsibouklis J,Nevell T G. Advanced Materials, 2003, 15, 647. 55 Katano Y,Tomono H,Nakajima T. Macromolecules, 1994, 27, 2342. 56 Hao Y,Pihui P,Xiufang W, et al. Progress in Chemistry,2010,22,1133. 57 Lam C N C,Wu R,Li D, et al. Advances in Colloid and Interface Science, 2002, 96, 169. 58 Gao X Y. Synthesis and properties research of fluorinated acrylatecopolymer latexa. Master's Thesis, Wenzhou University,China,2013(in Chinese). 高秀云. 含氟丙烯酸酯共聚物的合成及性能研究. 硕士学位论文,温州大学, 2013. 59 Quilliet C,Berge B. Current Opinion in Colloid & Interface Science, 2001, 6, 34. 60 Koopal L K. Advances in Colloid and Interface Science,2012,179-182,29. 61 Sun Z W,Xie E Q,Han W H, et al. Chinese Journal of Liquid Crystals and Displays, 2008(3),387(in Chinese). 孙志文,谢二庆,韩卫华,等.液晶与显示,2008(3),387. 62 Berge B, Peseux J. The European Physical Journal E,2000,3(2),159. 63 Oh J M, Ko S H, Kang K H. Physics of Fluids, 2010, 22(3), 032002. 64 Chen X,He T,Jiang H, et al. Displays, 2015, 37, 79. 65 Wang L, Duan J P, Wang W J, et al. Materials Reports A:Review Papers, 2016,30(10),70(in Chinese). 王亮, 段俊萍, 王万军,等. 材料导报:综述篇, 2016,30(10),70. 66 Mugele F, Baret J C. Journal of Physics: Condensed Matter, 2005, 17(28), R705. 67 Koo B, Kim C J. Journal of Micromechanics and Microengineering, 2013, 23(6), 067002. 68 Kim D Y,Steckl A J. Langmuir, 2010, 26, 9474. 69 Wu H,Tang B,Hayes R A, et al. Materials, 2016, 9(8), 707. 70 Lee J K, Park K W, Kim H R, et al. Sensors and Actuators B: Chemical, 2011, 160, 1593. 71 Narasimhan V,Park S Y. Langmuir, 2015, 31, 8512. 72 Hou J X. In: National Polymer Conference. Chengdu, 2017, pp. 746. 73 Zhou R,Ye Q,Li H, et al. Results in Physics, 2019, 12, 1991. 74 Chen X,Jiang H,Hayes R A, et al. Physica Status Solidi A-Applications and Materials Science, 2015, 212, 2023. 75 Dong B,Tang B,Groenewold J, et al. Royal Society Open Science, 2018, 5, 181121. 76 Wu H,Shui L,Li F, et al. ACS Applied Nano Materials, 2019, 2, 1018. 77 Hayes R A, Feenstra B J. Nature, 2003, 425(6956), 383.