Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 20110218-15    https://doi.org/10.11896/cldb.20110218
  高分子与聚合物基复合材料 |
含氟高分子涂料的合成及电润湿性能研究进展
徐卓凡1, 彭舒廷1, 周鹤1, 郭媛媛1, 周国富1,2,3, 徐雪珠1,*
1 华南师范大学华南先进光电子研究院,广东省光信息材料与技术重点实验室&彩色动态电子纸显示技术研究所,广州 510006
2 深圳市国华光电科技有限公司,广东 深圳 518110
3 深圳市国华光电研究院,广东 深圳 518110
Synthesis and Electrowetting Properties of Fluorine-containing Polymer Coating: a Review
XU Zhuofan1, PENG Shuting1, ZHOU He1, GUO Yuanyuan1, ZHOU Guofu1,2,3, XU Xuezhu1,*
1 Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Color Dynamic Electronic Paper Display Technology Institute, South China Institute of Advanced Optoelectronics, South China Normal University,Guangzhou 510006, China
2 Shenzhen Guohua Optoelectronics Technology Co., Ltd., Shenzhen 518110, Guangdong, China
3 Shenzhen Guohua Optoelectronics Research Institute, Shenzhen 518110, Guangdong, China
下载:  全 文 ( PDF ) ( 57888KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含氟高分子涂料具有优异的物化特性,被广泛应用于微电子、电子信息显示和各种光学器件等产业领域。特别的是,含氟高分子膜具有不黏附性、耐化学腐蚀性、极强的稳定性等性能,这些特性使其可用作疏水层并应用在新一代电润湿电子纸显示领域。电润湿作用是通过改变液滴与含氟疏水层之间电压来改变液滴在基板上的润湿性,使液滴发生形变、位移,是一种新的显示驱动机制。
   电润湿显示器件的性能和寿命与含氟高分子涂层介电性能直接相关。含氟高分子溶液或涂层存在溶剂选择范围小、玻璃化转化温度高、介电常数低、容易击穿等限制,这阻碍了电润湿显示器件的发展。这些在此之前还未见评价和综述。鉴于未来电子材料将向多品种、高质量发展,含氟高分子是能满足这一要求的功能材料,让研究者充分了解含氟高分子涂料的特征、合成、介电润湿性能,以及电润湿显示器件对相关材料的性能的要求,显得尤其重要。
   本文详细论述了近年来含氟高分子疏水材料的结构特点、性能及合成方法,综述了当前含氟高分子电润湿显示的研究进展,详细探讨了含氟高分子膜的关键物化性质包括介电常数、击穿电压、漏电流、润湿性能等及其对介电润湿性能的影响机制,总结了含氟聚合物材料的应用瓶颈和含氟聚合物涂料在电润湿显示器件上的应用现状,对含氟高分子今后的研究方向做了简单的展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐卓凡
彭舒廷
周鹤
郭媛媛
周国富
徐雪珠
关键词:  含氟聚合物  疏水性  电润湿  显示器件    
Abstract: Fluorinated polymer coatings have excellent physical properties and are widely used in the fields of microelectronics, electronic information display and various opticaldevices. In particular, fluorinated polymer films bear properties such as non-adhesiveness, highly chemical resis-tance, high stability, etc., which make it highly applicable as a hydrophobic layer material in electrowetting displays (EWD). The electrowetting (EW) is a new display driving mechanism by applying a direct voltage between a droplet and the fluorinated polymer based hydrophobic layer so that the droplet can be deformed and displaced.
The properties and lifetime of the EWD device is directly related to the dielectric properties of the fluorinated polymer layer. The fluorinated polymer solution or coating is limited by narrow solvent selection range, high glass conversion temperature, low dielectric constant and easy breakdown, which hinders the development of EWD devices. To our knowledge, these have not been evaluated and reviewed. Given that electronic materials are moving towards multi-variety and high-quality development, and fluorinated polymeric material is a functional material to meet these requirements, it appears particularly important to let researchers fully understand the characteristics, synthesis methods and dielectric wetting performance of fluorinated polymer coatings, as well as the performance requirements of EWD devices upon relevant materials.
This paper discusses the structural characteristics, performance and synthesis methods of fluorinated polymer hydrophobic materials, reviews the research progress of fluorinated polymer EWD in recent years, elaborates the key physicochemical properties of fluorinated polymer films, including dielectric constants, breakdown voltage, leakage current, wetting performance and their impacts on EW properties, summarizes the bottlenecks of fluorinated polymers and the application status of its coating on EWD devices, and prospects briefly its future research direction.
Key words:  fluoropolymer    hydrophobicity    electrowetting    display device
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  O63  
  TN25  
  TQ63  
基金资助: 国家重点研发计划项目(2016YFB0401501);教育部“长江学者和创新团队发展计划”(IRT_17R40);国家青年科学基金项目(51903094);广东省光信息材料与技术重点实验室(2017B030301007);国家绿色光电子国际联合研究中心(2016B01018);国家“111”计划光信息创新引智基地和2019年度广东省海外名师项目(191900023)
通讯作者:  *xxzxu@m.scnu.edu.cn   
作者简介:  徐卓凡,2016年6月毕业于合肥工业大学,获得工学学士学位。现为华南师范大学华南先进光电子研究院硕士研究生,在徐雪珠副研究员的指导下进行研究。目前主要研究领域为新型显示技术和绿色光电子材料与器件。徐雪珠,华南师范大学华南先进光电子研究院副研究员、硕士研究生导师。2010年硕士毕业于日本信州大学,2015年在美国北达科他州立大学取得材料与纳米技术博士学位,2015—2019年分别在沙特阿卜杜拉国王科技大学和美国加州大学戴维斯分校进行博士后研究工作。2019年12月回国后,入选华南师范大学“拔尖人才计划”。研究方向是胶体颗粒表面润湿性调控,自组装、各向异性、表界面和光子信息显示技术。近年来已在材料科学领域权威期刊和会议论文包括Advanced Functional MaterialsAdvanced ScienceLangmuirMacromoleculesACS Applied Materials & InterfacesNanoscaleScientific Reports等发表论文50余篇。
引用本文:    
徐卓凡, 彭舒廷, 周鹤, 郭媛媛, 周国富, 徐雪珠. 含氟高分子涂料的合成及电润湿性能研究进展[J]. 材料导报, 2022, 36(16): 20110218-15.
XU Zhuofan, PENG Shuting, ZHOU He, GUO Yuanyuan, ZHOU Guofu, XU Xuezhu. Synthesis and Electrowetting Properties of Fluorine-containing Polymer Coating: a Review. Materials Reports, 2022, 36(16): 20110218-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110218  或          http://www.mater-rep.com/CN/Y2022/V36/I16/20110218
1 Yan L K, Kou K C, Wang Z C,et al. China Adhesives, 2008(1),56(in Chinese).
颜录科, 寇开昌, 王志超, 等. 中国胶粘剂, 2008(1),56.
2 Luo S K. Research on radiation effect of PBX fluoropolymer binder. Ph.D. Thesis, China Academy of Engineering Physics,China, 2002(in Chinese).
罗世凯.PBX氟聚合物粘结剂的辐射效应研究.博士学位论文,中国工程物理研究院北京研究生部, 2002.
3 Sohail S, Mistri E A, Khan A, et al. Sensors and Actuators A: Physical, 2016, 238, 122.
4 Ding S J, Wang P F,Zhang J Y, et al. Chinese Journal of Materials Research, 2001(2), 201(in Chinese).
丁士进,王鹏飞,张剑云,等. 材料研究学报, 2001(2), 201.
5 Seyrat E, Hayes R A. Journal of Applied Physics, 2001, 90, 1383.
6 Dhindsa M, Kuiper S, Heikenfeld J.Thin Solid Films,2011,519,3346.
7 Zhang H, Wang J B, Liang X L, et al. Optoelectronic Technology, 2013,33(3),189(in Chinese).
张涵, 王建波, 梁学磊, 等. 光电子技术,2013,33(3),189.
8 Liu H, Dharmatilleke S, Maurya D K, et al. Microsystem Technologies, 2010, 16, 449.
9 Wu H, Hayes R A, Li F, et al. Displays, 2018, 53, 47.
10 Patil Y, Ameduri B.Progress in Polymer Science, 2013, 38, 703.
11 Qian H H. Study on preparation and application of short-chain fluorinated acrylic water and oil repellent finishing agent. Master's Thesis, Jiangnan University, China,2018(in Chinese).
钱海洪. 短链含氟丙烯酸酯拒水拒油整理剂的制备及其应用研究.硕士学位论文,江南大学, 2018.
12 Fang B, Zhao Z, Li X,et al. Journal of Macromolecular Science Part A-Pure and Applied Chemistry, 2007, 44, 1235.
13 Harkins W D.Journal of Polymer Science, 1950, 5, 217.
14 Zhao M, Li H, Wen L,et al. Journal of Applied Polymer Science, 2016, 133, 1.
15 Kadimi A, Kaddami H, Ounaies Z,et al. Polymer Chemistry, 2019, 10, 5507.
16 Soules A,Ameduri B,Boutevin B,et al. Macromolecules,2010,43,4489.
17 Yuan S,Pehkonen S O,Liang B,et al. Corrosion Science,2011,53,2738.
18 Li Z,Hillmyer M A,Lodge T P. Macromolecules, 2004, 37, 8933.
19 Xu B,Yao W,Li Y, et al. Scientific Reports, 2016, 6, 1.
20 Xu B,Liu Y,Sun X, et al. ACS Applied Materials & Interfaces, 2017, 9, 16517.
21 Ran J,Ding L,Yu D, et al. Journal of Membrane Science,2018,549,631.
22 Guo Y,Liu W. Polymer Science Series B, 2016, 58, 313.
23 Zhou J,Zhang L,Ma J. Chemical Engineering Journal, 2013, 223, 8.
24 Matyjaszewski K, Xia J. Chemical Reviews, 2001, 101, 2921.
25 Matyjaszewski K, Xia J. Chemical Reviews, DOI:10.1021/cr940534g.
26 Discekici E H,Anastasaki A,Kaminker R,et al. Journal of the American Chemical Society, 2017, 139, 5939.
27 Dadashi-Silab S,Matyjaszewski K. ACS Macro Letters, 2019, 8, 1110.
28 Treat N J,Sprafke H,Kramer J W,et al. Journal of the American Chemical Society, 2014, 136, 16096.
29 Discekici E H,Pester C W,Treat N J, et al, ACS Macro Letters, 2016, 5, 258.
30 Gong H,Zhao Y,Shen X, et al. Angewandte Chemie International Edition, 2018, 57, 333.
31 Jiang K,Han S,Ma M, et al. Journal of the American Chemical Society, 2020, 142, 7108.
32 Xu Z,Tang B,Zhou H, et al. Polymer, 2020, 186, 122073.
33 Tajitsu Y,Ogura H,Chiba A, et al. Japanese Journal of Applied Physics, 1987, 26, 554.
34 Vir W. 1 Introduction to Fluoropolymers, Elsevier, Netherlands, 1950.
35 Ebnesajjad S. Introduction to fluoropolymers, Elsevier, Netherlands,2011.
36 He F,Lau S,Chan H L, et al. Advanced Materials, 2009, 21, 710.
37 Han X,Chen S,Lyu X, et al. Physical Chemistry Chemical Physics, 2018, 20, 2826.
38 Wang Y,Zhou X,Chen Q, et al, IEEE Transactions on Dielectrics & Electrical Insulation, 2010, 17, 1036.
39 Liu J G, Shang Y M, Fan L, et al. Acta Polymerica Sinica, 2003, 8(4),565(in Chinese).
刘金刚,尚玉明, 范琳, 等. 高分子学报, 2003, 8(4),565.
40 Huang X, Sun B, Zhu Y, et al. Progress in Materials Science, 2019, 100, 187.
41 Ladhar A, Arous M, Kaddami H, et al. Journal of Molecular Liquids, 2015, 211, 792.
42 Thünemann A F,Schnöller U,Nuyken O, et al. Macromolecules, 2000, 33, 5665.
43 Thünemann A F. Langmuir, 2000, 16, 824.
44 Hui M H,Blunt M J. The Journal of Physical Chemistry B,2000,104,3833.
45 Young T. Philosophical Transactions-Royal Society London,1805,95,65.
46 Wenzel R N. Industrial & Engineering Chemistry Research,1936,28,988.
47 Patankar N A. Langmuir, 2003, 19, 1249.
48 Yoshimitsu Z,Nakajima A,Watanabe T, et al. Langmuir,2002,18,5818.
49 Brandon S,Marmur A. Journal of Colloid and Interface Science, 1996, 183, 351.
50 Tavana H,Jehnichen D,Grundke K, et al. Advances in Colloid and Interface Science, 2007, 134, 236.
51 Honda K,Morita M,Otsuka H, et al. Macromolecules, 2005, 38, 5699.
52 Saïdi S,Guittard F,Guimon C, et al. Journal of Polymer Science Part A-Polymer Chemistry, 2005, 43, 3737.
53 Caillier L, de Givenchy E T, Géribaldi S, et al. Journal of Materials Chemistry, 2008, 18, 5382.
54 Tsibouklis J,Nevell T G. Advanced Materials, 2003, 15, 647.
55 Katano Y,Tomono H,Nakajima T. Macromolecules, 1994, 27, 2342.
56 Hao Y,Pihui P,Xiufang W, et al. Progress in Chemistry,2010,22,1133.
57 Lam C N C,Wu R,Li D, et al. Advances in Colloid and Interface Science, 2002, 96, 169.
58 Gao X Y. Synthesis and properties research of fluorinated acrylatecopolymer latexa. Master's Thesis, Wenzhou University,China,2013(in Chinese).
高秀云. 含氟丙烯酸酯共聚物的合成及性能研究. 硕士学位论文,温州大学, 2013.
59 Quilliet C,Berge B. Current Opinion in Colloid & Interface Science, 2001, 6, 34.
60 Koopal L K. Advances in Colloid and Interface Science,2012,179-182,29.
61 Sun Z W,Xie E Q,Han W H, et al. Chinese Journal of Liquid Crystals and Displays, 2008(3),387(in Chinese).
孙志文,谢二庆,韩卫华,等.液晶与显示,2008(3),387.
62 Berge B, Peseux J. The European Physical Journal E,2000,3(2),159.
63 Oh J M, Ko S H, Kang K H. Physics of Fluids, 2010, 22(3), 032002.
64 Chen X,He T,Jiang H, et al. Displays, 2015, 37, 79.
65 Wang L, Duan J P, Wang W J, et al. Materials Reports A:Review Papers, 2016,30(10),70(in Chinese).
王亮, 段俊萍, 王万军,等. 材料导报:综述篇, 2016,30(10),70.
66 Mugele F, Baret J C. Journal of Physics: Condensed Matter, 2005, 17(28), R705.
67 Koo B, Kim C J. Journal of Micromechanics and Microengineering, 2013, 23(6), 067002.
68 Kim D Y,Steckl A J. Langmuir, 2010, 26, 9474.
69 Wu H,Tang B,Hayes R A, et al. Materials, 2016, 9(8), 707.
70 Lee J K, Park K W, Kim H R, et al. Sensors and Actuators B: Chemical, 2011, 160, 1593.
71 Narasimhan V,Park S Y. Langmuir, 2015, 31, 8512.
72 Hou J X. In: National Polymer Conference. Chengdu, 2017, pp. 746.
73 Zhou R,Ye Q,Li H, et al. Results in Physics, 2019, 12, 1991.
74 Chen X,Jiang H,Hayes R A, et al. Physica Status Solidi A-Applications and Materials Science, 2015, 212, 2023.
75 Dong B,Tang B,Groenewold J, et al. Royal Society Open Science, 2018, 5, 181121.
76 Wu H,Shui L,Li F, et al. ACS Applied Nano Materials, 2019, 2, 1018.
77 Hayes R A, Feenstra B J. Nature, 2003, 425(6956), 383.
[1] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[2] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[3] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[4] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[5] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[6] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[7] 林拱立, 杨志文, 李万万. 磷化铟量子点的合成及其显示器件应用研究进展[J]. 材料导报, 2020, 34(23): 23057-23063.
[8] 庄瑞杰, 于庆君, 唐晓龙, 易红宏, 黄永海, 张媛媛, 冯勇超. 介孔硅基分子筛吸附去除挥发性有机化合物的研究进展[J]. 材料导报, 2020, 34(15): 15013-15020.
[9] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[10] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed