Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20090063-9    https://doi.org/10.11896/cldb.20090063
  无机非金属及其复合材料 |
高技术陶瓷胶态成型技术及其产业应用
郗晓倩1, 张乐1,2, 姚庆3, 袁明星1, 刘明源1, 邵岑2, 陈浩1,2
1 江苏师范大学物理与电子工程学院,江苏省先进激光材料与器件重点实验室,江苏 徐州 221116
2 江苏锡沂高新材料产业技术研究院,江苏 徐州 221400
3 南通大学机械工程学院,江苏 南通 226019
Colloidal Molding Technologies of Advanced Ceramics and Its Industrial Applications
XI Xiaoqian1, ZHANG Le1,2, YAO Qing3, YUAN Mingxing1, LIU Mingyuan1, SHAO Cen2, CHEN Hao1,2
1 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
2 Jiangsu Xiyi Advanced Materials Research Institute of Industrial Technology, Xuzhou 221400, Jiangsu, China
3 School of Mechanical Engineering, Nantong University, Nantong 226019, Jiangsu, China
下载:  全 文 ( PDF ) ( 4999KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高技术陶瓷因其优异的光学、电学、力学及生物特性,在激光、电子、医疗、航天、新能源等战略产业领域获得了广泛应用。随着高技术陶瓷产业的快速发展,对其成型质量提出了更高要求。水系胶态成型是一种可以实现近净尺寸复杂形状的陶瓷成型技术,且以水为溶剂、较少的有机物添加量能够有效缩短排胶时间,降低生产成本,环保效果显著,在高技术陶瓷技术领域发展前景广阔。本文首先对高技术陶瓷几种典型的水系胶态成型技术进行了详细介绍;重点分析了采用胶态成型制备高技术陶瓷过程中存在的关键技术难题并给出了解决方案;其次,介绍了该技术在新兴产业的应用;最后,对其发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郗晓倩
张乐
姚庆
袁明星
刘明源
邵岑
陈浩
关键词:  高技术陶瓷  凝胶注模  水基流延  凝胶流延  浆料    
Abstract: Advanced ceramics have been widely used in laser, electronics, medical, aerospace, new energy as well as strategic industry fields due to their excellent optical, electrical, mechanical and biological properties. With the rapid development of the advanced ceramics industry, higher requirements are put forward for their forming quality. The aqueous colloidal forming technology can be used to form various kinds of complex shape ceramics in near net size. Moreover, using water as solvent and adding less organic matter can effectively shorten the rubber removal time, reduce the production cost, and obtain the remarkable environmental protection effect. In this paper, several typical aqueous colloidal forming technologies were introduced in detail. The key technical problems in the colloidal forming process were mainly analyzed and their corresponding solutions were given. Besides, its application in emerging industries was introduced. Lastly, its development trend was forecasted.
Key words:  advanced ceramic    gelcasting    aqueous tape casting    gel-tape casting    slurry
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TG113.25  
基金资助: 国家自然科学基金(61975070;51902143;61971207);江苏省高校重点学科建设项目(PAPD);江苏省重点研发项目(BE2019033;BE2018062);江苏省研究生科研与实践创新项目(KYCX20_2336;KYCX20_2212);江苏省自然科学基金项目(BK20191467);江苏省国际科技合作项目(BZ2020045;BZ2020030;BZ2019063);江苏高校自然科学基金(20KJA430003;19KJB430018);徐州市技术创新专项(KC19250;KC20201;KC20244);新型电子元器件关键材料与工艺国家重点实验室开放课题(FHR-JS-202011017)
通讯作者:  zhangle@jsnu.edu.cn   
作者简介:  郗晓倩,2015年6月毕业于淮阴师范学院,获得理学学士学位。现为江苏师范大学物理与电子工程学院硕士研究生,在张乐教授的指导下进行研究。目前主要从事透明陶瓷的水基流延成型工艺的研究。
张乐,江苏师范大学教授、硕士研究生导师,2009年6月本科毕业于南京工业大学材料科学与工程学院,2013年12月取得博士学位,2013年12月至今,在江苏师范大学物理与电子工程学院/江苏省先进激光材料与器件重点实验室先后任讲师、副教授,教授。担任《发光学报》、Journal of Advanced Ceramics杂志青年编委。获选江苏省六大人才高峰、江苏省科技服务“百优人才”等荣誉称号。主要从事光功能透明陶瓷的设计、制备与性能调控研究及其成果转化与产业化工作。以项目负责人承担国防科工局、国家自然基金等国家级项目3项,省部级及企业委托项目4项,以研究骨干参与国防973、预研、省市重点研发计划等。现任锡沂高新材料产业技术研究院副院长。近5年,在Photonics Research, Journal of Materials Chemistry, Journal of the American Ceramic Society等国际期刊发表论文47篇,综述3篇。以第一发明人申请发明专利48项,已授权12项,成功实施科技成果转化2项。
引用本文:    
郗晓倩, 张乐, 姚庆, 袁明星, 刘明源, 邵岑, 陈浩. 高技术陶瓷胶态成型技术及其产业应用[J]. 材料导报, 2022, 36(12): 20090063-9.
XI Xiaoqian, ZHANG Le, YAO Qing, YUAN Mingxing, LIU Mingyuan, SHAO Cen, CHEN Hao. Colloidal Molding Technologies of Advanced Ceramics and Its Industrial Applications. Materials Reports, 2022, 36(12): 20090063-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090063  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20090063
1 Saini D S, Ghosh A, Tripathy S, et al. Scientific Reports, 2020, 10(1), 1.
2 Li T, Heenan T M M, Rabuni M F, et al. Nature Communications, 2019, 10(1), 1.
3 Chen J, Yang F, Gao X E, et al. Material Reports A: Review Papers, 2014, 28(1), 250(in Chinese).
陈晶, 杨付, 高宪娥, 等. 材料导报:综述篇, 2014, 28(1), 250.
4 Sun X L, Gong Q J, Liang Y X, et al. Material Reports A: Review Papers, 2020, 10(12), 11 (in Chinese).
孙晓玲, 弓巧娟, 梁云霞, 等. 材料导报:综述篇, 2020, 10(12), 11.
5 Chen F, Zhu H, Wu J M, et al. Ceramics International, 2020, 46(8, Part A), 11268.
6 Chen J, Wang Y, Pei X, et al. Ceramics International, 2020, 46(9), 13066.
7 Nie Y M. Journal of Chongqing University of Technology (Natural Science), 2017, 3(31), 128 (in Chinese).
聂喻梅. 重庆理工大学学报(自然科学版), 2017, 3(31), 128
8 Yuan M X, Zhou T Y, Zhou W, et al. Chinese Journal of Luminescence, 2021, 42(19), 10 (in Chinese).
袁明星, 周天元, 周伟, 等. 发光学报, 2021, 42(19), 10.
9 Ma Y L, Zhang L, Zhou T Y, et al. Journal of Materials Chemistry, 2020, 8(13),4281.
10 Li J, Li W Y, Liu X, et al. Chinese Journal of Luminescence, 2021,42(5), 580 (in Chinese).
李江, 李万圆, 刘欣, 等. 发光学报, 2021, 42(5),580.
11 Kim E H, Choi H H, Jung Y G. Journal of Manufacturing Processes, 2020, 53, 43.
12 Toci G, Pirri A, Patrizi B, et al. Optical Materials, 2018, 83, 182.
13 Ji B, Alrayes A A, Zhao J, et al. Advances Applied Ceramics, 2019, 118(1-2), 46.
14 Li K, Wang H, Liu X, et al. Journal of the European Ceramic Society, 2017, 37(13), 4229.
15 Gao P, Zhang L, Yao Q, et al. Journal of the European Ceramic Society, 2021, 41(8), 4598.
16 Kluczowski R, Krauz M, Kawalec M, et al. Journal of Power Sources, 2014, 268, 752.
17 Mamalis A G. Journal of Materials Processing Technology, 2001, 108(2), 126.
18 Schwarzer E, Olawsky L, Hagen F, et al. Journal of the European Cera-mic Society, 2019, 39(15), 4911.
19 Dhara S, Kamboj R K, Pradhan M, et al. Bulletin of Materials Science, 2002, 25(6), 565.
20 Jian G, Tai Q, Jian Y, et al. Ceramics International, 2012, 38(4), 2905.
21 Ba X, Li J, Zeng Y, et al. Ceramics International, 2013, 39(4), 4639.
22 Parisotto E I B, Teleken J T, Laurindo J B, et al. Dry Technol, 2020, 38(8), 1024.
23 Young A C, Omatete O O, Janney M A, et al. Journal of the American Ceramic Society, 1991, 74(3), 612.
24 Zhou C L, Jiang B, Fan J, et al. Ceramics International, 2016, 42(1), 1648.
25 Cheng S, Gong J H, Zhang Z T. Rare Metal Materials and Engineering, 2003, 32, 307.
26 Xiang J H, Xie Z P, Huang Y. Ceramics International, 2002, 28(1), 17.
27 Xiang J H, Huang Y, Xie Z P. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2002, 323(1-2), 336.
28 Chen F, Wu J M, Wu H Q, et al. International Journal of Lightweight Materials and Manufacture, 2018, 1(4), 239.
29 Han S H, Lee J, Lee K M, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 108,103782.
30 Dubok V, Shynkaruk A, Atamanenko O, et al. Materials Science and Engineering: B, 2010, 169(1-3), 145.
31 Yao Q, Zhang L, Chen H, et al. Ceramics International, 2021, 47(3), 4327.
32 Gao P, Zhang L, Yao Q, et al. Ceramics International, 2020, 46(2), 2365.
33 Zhao F, Qi J, Lu T. Journal of the European Ceramic Society, 2020, 40(4), 1168.
34 Cai K, Huang Y, Yang J. Journal of the European Ceramic Society, 2005, 25(7), 1089.
35 Xie Z P, Huang Y, Chen Y L, et al. Journal Materials Science Letters, 2001, 20(13), 1255.
36 Yin S, Pan L, Guo L, et al. Ceramics International, 2018, 44(7), 7569.
37 Ndinisa S S, Whitefield D J, Sigalas I. Ceramics International, 2020, 46(3), 3177.
38 Lu Y, Liu J, Ren B, et al. Ceramics International, 2020, 46(8), 11432.
39 Yao Q, Zhang L, Gao P, et al. Journal of the American Ceramic Society, 2020, 103(6), 3513.
40 Freitas A K, Puton B M S, Peres A P D S, et al. International Journal of Applied Ceramic Technology, 2020, 17(1), 320.
41 Zhao H, Tang F, Xie Y, et al. International Journal of Applied Ceramic Technology, 2020, 17(3), 1255.
42 Zhou J, Ma Z, Zhang L, et al. International Journal of Hydrogen Energy, 2019, 44(54), 28939.
43 Belon R, Boulesteix R, Geffroy P M, et al. Journal of the European Ceramic Society, 2019, 39(6), 2161.
44 Sharma P K, Varadan V V, Varadan V K. Smart Materials & Structures, 2003, 12(5), 749.
45 Chen X, Wu Y. Optical Materials, 2019, 89, 316.
46 Luo J, Eitel R. Ceramics International, 2018, 44(3), 3488.
47 Krishnan P P R, Vijayan S, Wilson P, et al. Ceramics International, 2019, 45(15), 18543.
48 Wang C C, Luo L H, Wu Y F, et al. Materials Letters, 2011, 65(14), 2251.
49 da Silva B A, de Oliveira V S G, Di Luccio M, et al. Ceramics International, 2020, 46(10), 16096.
50 Xiang J H, Huang Y. Material Reports, 2000(Z10), 105 (in Chinese).
向军辉, 黄勇. 材料导报, 2000(Z10), 105.
51 Stastny P, Chlup Z, Trunec M. Journal of the European Ceramic Society, 2020, 40(7), 2542.
20090063-852 Dong B, Yang M, Wang F, et al. Chemical Engineering Journal, 2019, 370, 658.
53 Jabbari M, Bulatova R, Tok A I Y, et al. Materials Science and Enginee-ring: B, 2016, 212, 39.
54 Marie J, Bourret J, Geffroy P M, et al. Journal of the European Ceramic Society, 2017, 37(16), 5239.
55 Wäsche R, Steinborn G. Journal of the European Ceramic Society, 1997, 17(2), 421.
56 He R, Hu P, Zhang X, et al. Ceramics International, 2013, 39(3), 2267.
57 Ong B C, Leong Y K, Chen S B. Journal of Colloid & Interface Science, 2009, 337(1), 24.
58 Ding G, He R, Zhang K, et al. Ceramics International, 2020, 46(4), 4720.
59 FengQiu T, XiaoXian H, YuFeng Z, et al. Ceramics International, 2000, 26(1), 93.
60 de Hazan Y, Heinecke J, Weber A, et al. Journal of Colloid and Interface Science, 2009, 337(1), 66.
61 Xing Y Y, Wu H B, Liu X J, et al. Journal of Materials Processing Technology, 2019, 271, 172.
62 Yu J, Yang J, Yong H. Ceramics International, 2011, 37(5), 1435.
63 Ba X, Li J, Pan Y, et al. Journal of Alloys and Compounds, 2013, 577, 228.
64 Cui X M, Ouyang S X, Huang Y, et al. Bulletin of the Chinese Ceramic Society, 2004(2), 40 (in Chinese).
崔学民, 欧阳世翕, 黄勇, 等. 硅酸盐通报, 2004(2), 40.
65 Doreau F, Tarı G, Pagnoux C, et al. Journal of the European Ceramic Society, 1998, 18(4), 311.
66 Zeng X J, Liu W L. Advances in Applied Ceramics, 2016, 115(4), 1.
67 Spaniol K G, Caldas S C, Peres A P S, et al. Ceramics International, 2019, 45(9), 12417.
68 Kim D H, Lim K Y, Paik U, et al. Journal of the European Ceramic Society, 2004, 24(5), 733.
69 Huha M A, Lewis J A. Journal of the American Ceramic Society, 2000, 83(8), 1957.
70 Barati A, Kokabi M, Famili M H N. Journal of the European Ceramic Society, 2003, 23(13), 2265.
71 Wang X F, Peng C Q, Wang R C, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(7), 2466.
72 Jabbari M, Esfahani M N. Chemical Engineering Research and Design, 2019, 152, 269.
73 Bauer C, Cima M, Dellert A, et al. Journal of the American Ceramic Society, 2009, 92(6), 1178.
74 Cheng Z,Ye F, Liu Y, et al. Journal of Advanced Ceramics, 2019, 8(3), 399.
75 Wu X, Liang X H, Zhang X F, et al. Journal of Advanced Ceramics, 2021, 10(2), 347.
76 Tang F, Cao Y, Huang J, et al. Journal of the European Ceramic Society, 2012, 32(16), 3995.
77 赵康, 李军, 汤玉斐. 中国专利, CN101289328, 2008.
78 Kim S, Jang I, Kim C, et al. International Journal of Hydrogen Energy, 2020, 45(20), 11834.
79 Liu D D. Application of aqueous slurry in the preparation of solid oxide fuel cell by grouting.Master’s Thesis, South China University of Technology, China, 2014. (in Chinese).
刘丹丹. 水系浆料在注浆成型制备固体氧化物燃料电池中的应用. 硕士学位论文, 华南理工大学, 2014.
80 Wang C C, Luo L H, Wu Y F, et al. Acta Silicate, 2012, 40(7), 941 (in Chinese).
王程程, 罗凌虹, 吴也凡, 等. 硅酸盐学报, 2012, 40(7), 941.
81 Abd El Ghany O S, Sherief A H. Future Dental Journal, 2016, 2(2), 55.
82 Li M, Zhang L, Zhang C, et al. Ceramics International, 2020, 46(15), 23427.
83 Luo X P. Journal of Dental Materials and Devices, 2016(1), 1 (in Chinese).
骆小平. 口腔材料器械杂志, 2016(1), 1.
84 Liu K, Zhang K, Bourell D L, et al. Ceramics International, 2018, 44(17), 21556.
85 Lee G, Carrillo M, Mckittrick J, et al. Additive Manufacturing, 2020, 33, 101.
86 Witek L, Alifarag A M, Tovar N, et al. Journal of Orthopaedic Research, 2019, 37(12), 2499.
87 Shi Y, Wang W. Materials Letters, 2020, 261, 127.
[1] 靳学昌, 高珺, 李岩, 陈将俊, 刘春静, 赵宁. 玻璃粉体系对MLCC用铜电极浆料性能的影响[J]. 材料导报, 2021, 35(z2): 294-297.
[2] 武梓诺, 贾泓钰, 张宇晴, 陈旸. 口腔托槽用ZTA陶瓷材料凝胶注模成型工艺的研究[J]. 材料导报, 2021, 35(Z1): 100-103.
[3] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[4] 孙万兴, 郭少青, 董弋, 刘洋, 高丽兵, 卫贤贤, 曹艳芝, 董红玉, 李鑫. 低温固化银浆的制备及树脂粘结相对其性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 402-405.
[5] 沙建芳, 夏中升, 刘建忠, 郭飞, 徐海源. 超高强水泥基灌浆材料疲劳性能研究综述[J]. 材料导报, 2021, 35(11): 11013-11026.
[6] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[7] 马亮, 杨静, 王继平, 许奎. 凝胶注模制备环形二氧化铀芯块工艺研究[J]. 材料导报, 2020, 34(Z1): 157-160.
[8] 吴永健, 唐仁衡, 欧阳柳章, 李文超, 王英, 黄玲. 分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用[J]. 材料导报, 2020, 34(12): 12030-12035.
[9] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[10] 李强, 魏磊山, 孙旭东. 凝胶注模成型技术制备氧化石墨烯/HA复合材料的研究*[J]. 《材料导报》期刊社, 2017, 31(18): 39-42.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed