Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 535-539    
  高分子与聚合物基复合材料 |
2,4-二硝基咪唑热分解机理的理论研究
孙毅, 徐业伟
西南科技大学,材料科学与工程学院,生物质材料教育部工程研究中心,绵阳 621010
Theoretical Study on the Thermal Decomposition Mechanism of 2,4-Dinitroimidazole
SUN Yi, XU Yewei
Engineering Research Center of Biomass Materials, Ministry of Education,School of Materials Science and Engineering, Southwest University of Science and Technologhy, Mianyang 621010, China
下载:  全 文 ( PDF ) ( 2025KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 运用密度泛函理论在B3LYP/6-311G(d,p)水平上计算了2,4-二硝基咪唑(2,4-DNI)的几何结构。基于自然键轨道理论,分析了Wiberg键级、Mulliken电荷和NBO电荷,进而得到各键的中点静电势。运用了从头算分子动力学(AIDM)方法对2,4-DNI分子的热分解轨迹进行模拟,并以B3LYP/6-311G(d,p)方法计算的反应能垒为依据,计算了硝基断裂和异构化反应在400~4 000 K下的速率常数。结果表明:2,4-DNI主要起始热分解方式是C-NO2断裂;异构化反应在热力学上是允许可行的,但动力学却难以进行;2,4-DNI分解生成的NO2对其热分解会产生影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙毅
徐业伟
关键词:  2,4-DNI  热分解  速率常数    
Abstract: The geometry structures of 2,4-Dinitroimidazole were calculated by density functional theory at the B3LYP/6-311G(d,p) level. The Wiberg bond indexes and NBO charges of 2,4-Dinitroimidazole molecule were analyzed by using Natural Bond Orbital theory. The thermal decomposition pathways of 2,4-DNI were studied by ab initio molecular dynamics simulations. Based on the energy obtained by B3LYP/6-311G(d,p) method, the rate constants of C-NO2 cleavage and nitro-nitrite isomerization reaction were calculated in the temperature range of 400—4 000 K. Results showed that C-NO2 cleavage was the primary initial step in the thermal decomposition of 2,4-Dinitroimidazole. Nitro-nitrite isomerization reaction was feasible in thermodynamics but infeasible in dynamics.
Key words:  2,4-Dinitroimidazole    thermal decomposition    rate constant
                    发布日期:  2021-12-09
ZTFLH:  O6  
基金资助: 国家自然科学基金青年基金(11802254)
通讯作者:  287223217@qq.com   
作者简介:  孙毅,西南科技大学讲师,2013年在南京理工大学获得材料科学与工程专业博士学位,同年到西南科技大学材料科学与工程学院工作,主要从事含能材料光/热分解机理研究。
引用本文:    
孙毅, 徐业伟. 2,4-二硝基咪唑热分解机理的理论研究[J]. 材料导报, 2021, 35(z2): 535-539.
SUN Yi, XU Yewei. Theoretical Study on the Thermal Decomposition Mechanism of 2,4-Dinitroimidazole. Materials Reports, 2021, 35(z2): 535-539.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/535
1 舒远杰,龙新平. 四川省中青年专家大会.成都, 2002.
2 Damavarapu R,Jayasuriya K,Vladimiroff T. US patent, 5387297, 1995.
3 Grigoreva V N, Fassakhov R K, Gafarow A N. Su patent, 1416488, 1988.
4 Suwinski J, Salwinska E. Polish Journal of Chemistry, 1987, 61, 613.
5 刘慧君,杨林,曹端林.含能材料,2005,13(3),141.
6 Jadhav H S, Talawar M B, Sivabalan R, et al. Journal of Hazardous Materials, 2007, 143, 192.
7 Minier L, Behrens R F, Bulusu S. DE Report No. 96003 235, 1996
8 Behrens R, Minier L, Bulusu S. DE Report No. 98051315, 1998.
9 Yim W, Liu Z.Journal of the American Chemical Society, 2001, 123, 2243.
10 Xiong Y, Shu Y J, Zhou G, et al. New Trends Res. Energ. Mater., Proc. Semin., 9th, Pardubice, Czech Republic, 2006.
11 Becke A D.The Journal of Chemical Physics, 1993, 98, 5648.
12 Kresse G, Hafner J. Physical Review B, 1993, 47, 558.
13 Kresse G, Furthmiiller J. Computational Materials Science, 1996, 6,15.
14 Kresse G, Furthmuller J. Physical Review B, 1996, 54, 11169.
15 Zhang S, Truong T N. Vklab.Version 1.0 ed. Univesity of Utah, 2001.
16 Hase W L.Accounts of Chemical Research, 1998,31,659.
17 Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 98, Rebision D. 3. Gaussian, Inc., Pittsburgh PA, 1998.
18 Bracuti A J. Journal of Chemical Crystallography, 1995, 25, 625.
19 肖鹤鸣. 硝基化合物的分子轨道理论, 国防工业出版社, 1993.
20 Hohenberg P, Kohn W. Physical Review B, 1964,136, 864.
21 Coalson R D, Beek T L. Wiley,New York,2002, pp. 2086.
22 Politzer P, Murray J S.Journal of Molecular Structure, 1996, 376, 419.
23 宗和厚,黄奕刚,舒远杰,等. 含能材料,2006,14(6), 425.
24 熊鹰,舒远杰,周歌,等.含能材料,2006,14(6), 421.
[1] 冯振宇, 范保鑫, 王纳斯丹, 韩雪飞, 李翰, 吴敬涛. 基于UMATHT子程序的玻璃纤维/乙烯基酯热响应数值模拟[J]. 材料导报, 2021, 35(2): 2191-2198.
[2] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[3] 马砺, 刘志超, 肖旸, 康付如, 杨昆, 邓军. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.
[4] 刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed