Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 525-528    
  高分子与聚合物基复合材料 |
聚碳硅烷协效氢氧化镁阻燃聚乙烯复合材料的残炭结构演变
侯鹏程1, 王永亮1, 韩志东1,2, 王春锋1
1 哈尔滨理工大学材料科学与工程学院,哈尔滨 150040
2 哈尔滨理工大学电介质工程国家重点实验室培育基地,哈尔滨 150080
Structure Evolution of Residual Char of Polycarbosilane/Magnesium Hydroxide Flame Retardant Polyethylene Composites
HOU Pengcheng1, WANG Yongliang1, HAN Zhidong1,2, WANG Chunfeng1
1 School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
2 Key Laboratory of Engineering Dielectrics and Its Application of Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
下载:  全 文 ( PDF ) ( 3884KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氢氧化镁等为代表的无卤阻燃聚烯烃材料由于具有无毒、环保等特点,在阻燃领域中一直占有重要地位。鉴于其阻燃机理决定的低阻燃效率需要高添加量的特点及分解后自身残留固相产物较多,相应的阻燃复合材料燃烧后能够产生较多的残炭,为陶瓷化提供了物质基础,但以氢氧化镁为主的陶瓷化阻燃聚烯烃材料研究较少。陶瓷化前驱体材料——聚碳硅烷具有较高的陶瓷化产率,常用于制备具有复杂结构的陶瓷构件,但其用于聚烯烃阻燃的报道较少。本工作将聚碳硅烷与氢氧化镁复合制备了阻燃聚乙烯复合材料,研究了聚碳硅烷对复合材料凝聚相炭层结构的影响。结果表明,聚碳硅烷能够有效地将氧化镁颗粒粘结在一起形成具有特殊结构的陶瓷化炭层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯鹏程
王永亮
韩志东
王春锋
关键词:  聚碳硅烷  氢氧化镁  聚乙烯  陶瓷化  阻燃    
Abstract: Halogen-free flame retardant polyolefin materials represented by magnesium hydroxide flame retardant have been playing an important role in the flame retardant field because of their non-toxic and eco-friendly characteristics. In view of its high addition result from its low flame retardant efficiency determined by the flame retardant mechanism and the large number of solid phase products left after decomposition, more resi-dual char of its composites will be left after combustion, which provides material basis for the ceramization. However, the ceramifiable flame retardant polyolefin materials based on magnesium hydroxide have been less studied. Polymer ceramic precursor materials—polycarbosilane, has high ceramic yield, which is often used to produce ceramic components with complex structures, but its application in flame retardant of polyolefin is rarely reported. In this paper, flame-retardant polyethylene (PE) composites were prepared with polycarbosilane and magnesium hydroxide, the effect of polycarbosilane on the structure of condensed char layer of the composites was studied. The results show that polycarbosilane can effectively bond magnesium oxide particles together and produce a ceramic carbon layer with special structure.
Key words:  polycarbosilane    magnesium hydroxide    polyethylene    ceramization    flame
                    发布日期:  2021-12-09
ZTFLH:  TQ132  
基金资助: 国家自然科学基金(51602084);黑龙江省自然科学基金(YQ2019E030);黑龙江省普通高校基本科研业务费专项资金(LGYC2018JC032)
通讯作者:  chunfeng.wang@hrbust.edu.cn   
作者简介:  侯鹏程,于2019年9月至今,作为一名研究生在哈尔滨理工大学学习,主要从事阻燃材料的研究。
王春锋,讲师,硕士研究生导师,在哈尔滨理工大学工作,主要从事陶瓷化无卤阻燃聚烯烃材料的研究。
引用本文:    
侯鹏程, 王永亮, 韩志东, 王春锋. 聚碳硅烷协效氢氧化镁阻燃聚乙烯复合材料的残炭结构演变[J]. 材料导报, 2021, 35(z2): 525-528.
HOU Pengcheng, WANG Yongliang, HAN Zhidong, WANG Chunfeng. Structure Evolution of Residual Char of Polycarbosilane/Magnesium Hydroxide Flame Retardant Polyethylene Composites. Materials Reports, 2021, 35(z2): 525-528.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/525
1 Sener A A, Demirhan E.International Journal of Mechanics and Materials in Design, 2019, 29, 1376.
2 Wang Z Z, Qu B J, Fan W C, et al. Journal of Applied Polymer Science, 2020, 81, 206.
3 Hu X C, Zhu X J.Progress in Organic Coatings, 2019, 135, 291.
4 Kai Lu, Lijun Ye, Qiushi Liang, et al.Progress & Polymer Composites, 2015, 36(7), 1258.
5 Dasari A, Yu Z Z, Cai G P, et al.Progress in Polymer Science, 2013, 38, 1357.
6 Camino G, Costa L, et al.Polymer Degradation and Stability, 1991, 33(2), 131.
7 Drysdable D.An introduction to fire dynamics, third edition, John Wiley and Sons, Ltd., America, 2011, pp.86.
8 Huang Guobo, Gao Jianrong, Wang Xu, et al.Materials Letters, 2012,66(1), 187.
9 Zhu Z M, Rao W H, Liao Wang, et al. Polymer Degradation and Stability, 2017, 143, 164.
10 Henri Vahabi, Amin Raveshtian, Mohammad Fasihi, et al. Polymer Degradation and Stability, 2017, 143, 164.
11 杨友强,姜向新,简思强,等. 中国塑料,2019,33(3),43.
12 Joanna Lenza, Katarzyna Merkel, Henryk Rydarowski. Polymer Degradation and Stability, 2012, 97, 2581.
13 Ma Haiyun.Nanotechnology, 2007,18(37), 375.
14 Fichera M A, Braun U, Schartel B, et al.Journal Analytical and Applied Pyrolysis, 2007, 78(2), 378.
15 Chen Xiaolang, Yu Jie, He Min, et al.Journal of Polymer Research, 2009, 16(4), 357.
16 Lemiye Atabek Savas, Mehmet Dogan.Polymer Degradation and Stability, 2019, 165,101.
17 Feng Caimin, Zhang Yi, Liang Dong, et al.Journal of Analytical and Applied Pyrolysis, 2010,117(1), 443.
18 Wu Zhi, Hu Yunchu, Shu Wang.Journal of Applied Polymer Science, 2010,117(1), 443.
19 Wang Chunfeng, Wang Yongliang, Han Zhidong.Scientific Reports, 2018, 8, 14494.
[1] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[2] 王小霞, 王勇, 张娟. 含磷低聚倍半硅氧烷及其阻燃应用的研究进展[J]. 材料导报, 2021, 35(Z1): 552-559.
[3] 孙吉, 何文涛. 三氧化二锑对尼龙阻燃性能的影响研究发展动态[J]. 材料导报, 2021, 35(Z1): 560-565.
[4] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[5] 常洪雷, 曲明月, 刘伟, 陈繁育, 周鹏飞, 程梦莹, 刘健. 基于聚乙烯醇制备的自修复胶囊的性能评估[J]. 材料导报, 2021, 35(6): 6212-6218.
[6] 康兴隆, 鲁哲宏, 柳妍, 冯伟丽, 刘保英, 房晓敏, 丁涛. 改性纳米二氧化硅协效二乙基次磷酸铝阻燃尼龙6[J]. 材料导报, 2021, 35(18): 18047-18051.
[7] 唐启恒, 郭文静. 三聚氰胺聚磷酸盐/次磷酸铝对高密度纤维板阻燃和力学性能的影响[J]. 材料导报, 2021, 35(16): 16166-16171.
[8] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[9] 范娟娟, 闵样, 杨吉, 张永航, 班大明. 一种具有良好抑烟性能的磷杂菲阻燃剂在环氧树脂中的应用研究[J]. 材料导报, 2021, 35(10): 10189-10196.
[10] 冯伟丽, 康兴隆, 柳妍, 鲁哲宏, 刘保英, 房晓敏, 丁涛. 层层自组装改性剑麻纤维填充聚丙烯复合材料性能研究[J]. 材料导报, 2021, 35(10): 10211-10215.
[11] 林绍铃, 罗祖获, 陈丹青, 赵小敏, 陈国华. 无卤阻燃硬质聚氨酯泡沫塑料研究进展[J]. 材料导报, 2021, 35(1): 1196-1202.
[12] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[13] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[14] 高芸, 向宇姝, 徐国敏, 龙丽娟, 秦舒浩, 于杰. 烷基次磷酸盐及其协效阻燃研究进展[J]. 材料导报, 2020, 34(19): 19190-19196.
[15] 朱静怡, 盛慧, 张林珊, 管婧希. 基于超支化聚乙烯亚胺的双/多模态成像造影剂的研究进展[J]. 材料导报, 2020, 34(19): 19197-19205.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed