Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 399-403    
  金属与金属基复合材料 |
Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究
田永强1,2, 苑清英1,2, 付安庆3, 何石磊1,2, 周新义1,2, 汪强1,2, 杨晓龙1,2, 陈浩明1,2
1 国家石油天然气管材工程技术研究中心,宝鸡 721008
2 宝鸡石油钢管有限责任公司,宝鸡 721008
3 石油管材及装备材料服役行为与结构安全国家重点实验室,西安 710077
Passivation Behavior of Co1.5CrFeNi1.5Mo0.5Ti0.5 in 3.5% NaCl Solution with Different pH Values
TIAN Yongqiang1,2, YUAN Qingying1,2, FU Anqing3 , HE Shilei1,2, ZHOU Xinyi1,2, WANG Qiang1,2, YANG Xiaolong1,2, CHEN Haoming1,2
1 Chinese National Engineering Research Center for Petroleum and Natural Gas Tubular Goods, Baoji 721008, China
2 Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, China
3 State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Xi'an 710077, China
下载:  全 文 ( PDF ) ( 2505KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究Co1.5CrFeNi1.5Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为,以纯度超过99wt%的钴(Co)、铬(Cr)、钛(Ti)、铁(Fe)和镍(Ni)为原料,用真空感应炉进行熔炼,对熔炼后的Co1.5CrFeNi1.5 Mo0.5Ti0.5合金运用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析仪(EDS)进行显微组织的表征,采用动电位极化、电化学阻抗谱、恒电位极化、XPS分析等手段来研究其在不同pH值的3.5%NaCl溶液中的钝化行为。结果表明,Co1.5CrFeNi1.5 Mo0.5Ti0.5相结构为单一的fcc结构,其微观组织为树枝晶结构;Co1.5CrFeNi1.5 Mo0.5Ti0.5合金在不同pH值的3.5%NaCl溶液中具有较强的钝化能力,且随着pH值的增加,其抗腐蚀能力增强;其钝化膜的成分主要包括Cr2O3、Cr(OH)3、Co3O4、MoO3、NiO、Fe2O3、Fe3O4、TiO2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田永强
苑清英
付安庆
何石磊
周新义
汪强
杨晓龙
陈浩明
关键词:  高熵合金  显微组织  维顿电流密度  XPS  钝化膜    
Abstract: IIn order to study the passivation behavior of Co1.5CrFeNi1.5 Mo0.5Ti0.5 in 3.5% NaCl acid solution with different pH values. Cobalt (Co), chromium (Cr), titanium (Ti), iron (Fe) and nickel (Ni) with a purity of more than 99wt% were melted in a vacuum induction furnace. The microstructure of Co1.5CrFeNi1.5 Mo0.5Ti0.5 alloy was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS). The passivation behavior of Co1.5CrFeNi1.5 Mo0.5Ti0.5alloy in 3.5% NaCl acid solution with different pH values was studied by potentiodynamic polarization, electrochemical impedance spectroscopy, potentiostatic polarization and XPS analysis. The results show that the phase structure of Co1.5CrFeNi1.5 Mo0.5Ti0.5 is a single fcc structure, and its microstructure is dendrite structure; Co1.5CrFeNi1.5-Mo0.5Ti0.5 alloy has strong passivation ability in different pH 3.5% NaCl acid solution, and its corrosion resistance is enhanced with the increase of pH value; the composition of passivation film mainly includes Cr2O3, Cr(OH)3, Co3O4, MoO3, NiO, Fe2O3, Fe3O4, TiO2.
Key words:  high entropy alloy    microstructure    passive current density    XPS    passivation film
                    发布日期:  2021-12-09
ZTFLH:  TB31  
基金资助: 国家自然科学基金青年科学基金(21908250)
通讯作者:  2236530358@qq.com   
作者简介:  田永强,工程师,硕士,2020年毕业于西安石油大学,同年在中石油宝鸡钢管有限责任公司工作,主要从事油井管材研究与开发工作。
引用本文:    
田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
TIAN Yongqiang, YUAN Qingying, FU Anqing, HE Shilei, ZHOU Xinyi, WANG Qiang, YANG Xiaolong, CHEN Haoming. Passivation Behavior of Co1.5CrFeNi1.5Mo0.5Ti0.5 in 3.5% NaCl Solution with Different pH Values. Materials Reports, 2021, 35(z2): 399-403.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/399
1 Davis J R. Metal handbook 10th edition volume 1, The Materials Information Society, 1990
2 Davis J R. Metal handbook 10th edition volume 2, The Materials Information Society, 1990
3 Inoue A, Zhang T, Masumoto T. Journal of Non-Crystalline Solids, 1993, 57(6),473.
4 Amiya K, Nishiyama N, Inoue A, et al. Materials Science and Enginee-ring, 1994, 79(4),692.
5 范健. 焊管,2018,41(11),40.
6 郭浩霖,韩彬. 焊管,2016,39(11),5.
7 Shen B,Akiba M, Inoue A. Journal of Applied Physics, 2006, 100(4),2248.
8 Katagiri H, Meguro S, Yamasaki M, et al.Corrosion Science, 2001, 43(1),171.
9 Bing Liu, Lin Liu. Intermetallics,2006,15(5),679.
10 Kumar Katiyar Nirmal,Biswas Krishanu,Yeh J W,et al. Nano Energy,2021,46(7),88.
11 Yeh J W, Lin S J,Chin T S et al.Metallurgical and Materials Transactions A,2004,35(8),2533
12 Wang D P, Shen J W, Chen Z,et al.Acta Metallurgica Sinica,2021,34(11),1574.
13 Yeh J W,Chen S K, Lin S J, et al.Advanced Engineering Materials,2004,6(5),299
14 Haoyan Diao,Louis J Santodonato,Zhi Tang,et al.Journal of Metals,2015,67(10),2321
15 Yang, Bin, Xie, et al.Corrosion Science, 2017,119(5),33
16 Tang Z,Huang L,He W, et al.Entropy,2014,16(2),859.
17 Chen YY,Hong UT,Shih HC,et al.Corrosion Science,2004,47(11),2679.
18 Lee C P, Chang C C, Chen Y Y, et al.Corrosion Science, 2008, 50(7),2053.
19 Chin-You Hsu, Woei-Ren Wang, Wei-Yeh Tang, et al.Advanced Engineering Materials, 2010,12(1),44.
20 Chou Y L,Wang Y C,Yeh J W, et al. Corrosion Science,2010, 52(10),3481.
21 Macdonald D D, Scott A C, Wentrcek P.Journal of The Electrochemical Society,2019,126(6),908.
22 曹楚南.腐蚀电化学原理,化学工业出版社,北京,2008.
23 Hu Y B, Dong C F, Sun M, et al. Corrosion Science,2011,53(12),4159.
24 Heakal E T, Fekry A M, Ghoneim A, et al.Corrosion Science, 2008, 50(6),1618.
25 Liu J C, Park S W, Nagao S, et al.Corrosion Science, 2015, 92(3), 263.
26 Cui Z, Wang L, Ni H, et al. Corrosion Science,2017, 118(8),31.
27 Cheng X, Wang Y, Dong C,et al. Corrosion Science,2018, 134(4),122.
28 Luo H, Li Z, Mingers A M,et al. Corrosion Science, 2018, 134(3),31.
29 Luo Q, Qin Z, Wu Z, et al.Corrosion Science, 2018, 138(6), 8.
30 Hua Y, Barker R, Neville A, et al.Corrosion Science,2015,356(30), 499.
31 Luo Q, Qin Z, Wu Z,et al.Corrosion Science,2018,138(7), 8.
32 Vogel U,Brachman E,Oswald S, et al.Vacuum,2015,43(6),117.
33 Mazzarolo A, Curioni M,Vicenzo A,et al. Electrochimica Acta,2012,75(2),288.
34 Liliana Lukashuk,Karin Föttinger,Elisabeth Kolar,et al. Journal of Catalysis,2016,344(1),15
35 Winiarski J,Tylus W,Krawczyk M S,et al.Electrochimica Acta, 2016,361(8),708.
36 Winiarski J,Tylus W,Krawczyk M S,et al.Applied Surface Science, 2016,364(11),455.
37 郑伟,白真权,赵雪会,等.焊管,2014,37(6),22.
38 钱进森,李振东,刘月发,等.焊管,2015,38(6),11.
39 Liu X,An Y, Li S, et al. Tribology International, 2017, 115(7),35.
[1] 金城焱, 杜兴蒿, 闫霏, 史传鑫, 盖业辉, 黄志青, 李万鹏, 武保林, 段国升, 王大鹏. 铜镍合金的强韧化行为及其微观机制的研究进展[J]. 材料导报, 2021, 35(z2): 372-375.
[2] 侯丽丽, 郭强, 要玉宏, 刘江南. B原子促进高熵合金FCC2相的形成机制[J]. 材料导报, 2021, 35(z2): 381-384.
[3] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[4] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[5] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[6] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[7] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[8] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[9] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[10] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[11] 车波, 卢立伟, 吴木义, 康伟, 唐伦圆, 房大庆. 预时效对变形镁合金组织与力学性能的影响[J]. 材料导报, 2021, 35(21): 21249-21258.
[12] 杨海峰, 赵洪运, 许欣欣, 孙广达, 周利, 赵慧慧, 刘会杰. 静轴肩搅拌摩擦焊2A14-T4铝合金T形接头的组织和性能[J]. 材料导报, 2021, 35(20): 20045-20051.
[13] 朱奕瑶, 冯俊强, 张增耀, 杨哲宁, 张向鹏, 王红霞. 形变热处理对Mg-4Al-1Si-1Gd合金组织及性能的影响[J]. 材料导报, 2021, 35(20): 20149-20154.
[14] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[15] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed