Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 236-240    
  无机非金属及其复合材料 |
石膏基地面轻质保温层材料的制备及性能研究
贺诚, 李庆超, 周涵, 李东旭
南京工业大学材料科学与工程学院,南京 210000
Study on Preparation and Properties of Light Insulation Material for Gypsum Base Surface
HE Cheng, LI Qingchao, ZHOU Han, LI Dongxu
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210000, China
下载:  全 文 ( PDF ) ( 6809KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以α-半水石膏为主要胶凝材料,混合聚苯颗粒(EPS)和玻化微珠(VM)作为轻骨料,并对石膏-水泥-粉煤灰混合料配比建立回归方程以及多目标优化分析,分别从宏观性能、孔径结构和微观分析对石膏基保温砂浆进行实验研究。实验结果表明:轻骨料VVMVEPS为3∶7较合适,优化配比为石膏82.6%、水泥12%和粉煤灰5.4%。EPS和VM混合改善了制品孔结构,使得制品基体内部更致密,提供了良好的力学性能和导热系数,满足地面用复合板保温层材料的要求指标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺诚
李庆超
周涵
李东旭
关键词:  石膏  保温材料  轻质骨料  混合料优化    
Abstract: With the α-hemihydrate as the main cementifying material, mixed expanded polystyrene (EPS) and vitrified microsphere (VM) as light aggregate, and the mixture ratio of gypsum, cement and fly ash was used to establish the regression equation and conduct multi-objective optimization analysis. The experimental research on gypsum based thermal insulation mortar was conducted from the macro-performance, pore structure and micro-analysis respectively. Experimental results showed that through the analysis of macro performance and pore size structure, the VVMVEPS of light aggregate is 3∶7, and the optimal ratio is 82.6% of gypsum, 12% of cement and 5.4% of fly ash. The good particle grading of EPS and VM reduces the porosity of mortar. Cement and fly ash mutually promote the generation of hydration products in gypsum environment. The cementitious C-S-H, needle-like AFt and unhydrated SiO2 particles together fill the pores of gypsum crystal, making the internal matrix of products more compact. It provides good mechanical properties and thermal conductivity, and meets the requirements of composite plate insulation material for ground.
Key words:  gypsum    insulation material    light aggregate    mixture optimization
                    发布日期:  2021-12-09
ZTFLH:  TU55  
基金资助: 国家重点研发计划(2018YFD1101000)
通讯作者:  dongxuli@njtech.edu.cn   
作者简介:  贺诚,1995年12月生,硕士研究生,就读于南京工业大学,主要从事地面轻质保温材料方面的研究。
李东旭,南京工业大学材料科学与工程学院博士研究生导师、教授。现任中国硅酸盐学会水泥专业委员会副主任委员,长期从事新型胶凝材料、环境协调胶凝材料和生物材料的物理化学原理等方面的研究。获得节能型钢渣水泥化工部科技进步三等奖,江苏省优秀论文奖和研究生社会实践优秀指导教师的称号,近五年在国内外重要刊物上发表学术论文30多篇,被SCI收录论文9篇。
引用本文:    
贺诚, 李庆超, 周涵, 李东旭. 石膏基地面轻质保温层材料的制备及性能研究[J]. 材料导报, 2021, 35(z2): 236-240.
HE Cheng, LI Qingchao, ZHOU Han, LI Dongxu. Study on Preparation and Properties of Light Insulation Material for Gypsum Base Surface. Materials Reports, 2021, 35(z2): 236-240.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/236
1 Jia Guanhua, Zhu Li, Peng Liu, et al. Journal of Non-Crystalline Solids, 2018, 482,192.
2 Basim Abu-Jdayil, Mourad Abdel-Hamid, Hittini Waseem, et al. Construction and Building Materials, 2019, 214,709.
3 Cong Zhu, Zhang Jianxin, Peng Jiahui, et al. Construction and Building Materials, 2018, 163,695.
4 Johari F, Peronato G, Sadeghian P, et al. Renewable and Sustainable Energy Reviews, 2020, 128,109902.
5 Danielle Densley Tingley, Hathway Abigail, Davison Buick. Building and Environment, 2015, 85,182.
6 石永桂. 北方建筑, 2019, 4(2), 50.
7 梁洪超,相利学,吴亚男. 广州化工, 2016, 44(21), 86.
8 张大江,王栋民,赵计辉,等. 建材发展导向(下), 2016(12), 72.
9 Serdar Celik, Family Roxana, Menguc M-Pinar. Journal of Building Engineering, 2016, 6,105.
10 涂沛,程忠庆,韩瑞杰. 新型建筑材料, 2019, 46(4), 77.
11 Mercedes Del Rio Merino, Villoria Sáez Paola, Longobardi Iolanda, et al. Journal of Cleaner Production, 2019, 220,144.
12 Ayse Bicer, Kar Filiz. Thermal Science and Engineering Progress, 2017, 1, 59.
13 Yue Xie, Li Jun, Lu Zhongyuan, et al. Construction and Building Mate-rials, 2019, 195, 505.
14 雷东移,郭丽萍,孙伟. 材料导报:研究篇, 2016, 30(10), 122.
15 Amritha R, Sathyan D, Mini K M. Construction and Building Materials, 2019, 221,787.
16 陈勇,蒋青青,张毅,等. 材料导报:研究篇, 2014, 28(4), 135.
17 Yi Xu, Jiang Linhua, Xu Jinxia, et al. Construction and Building Mate-rials, 2012, 27(1), 32.
18 Hanifi Binici, Aksogan Orhan. Materials Today Communications, 2017, 10, 14.
19 Mayandi Venkatesan, Zaib Qammer, Shah Izhar-Hussain, et al. Resources, Conservation and Recycling, 2019, 148,114.
20 莫惠栋. 扬州大学学报(农业与生命科学版), 2004, 25(1),1.
21 石妍,杨华全,陈霞,等. 建筑材料学报, 2015, 18(1), 133.
22 Rao G A, Prasad B K R. Cement and Concrete Research, 2002, 32(2), 253.
23 Aligizaki K K, de Rooij M R, Macdonald D D. Cement and Concrete Research, 2000, 30(12), 1941.
[1] 董一苇, 徐祖顺, 杨婷婷, 高庆. 化学石膏制备α-半水石膏的研究进展[J]. 材料导报, 2021, 35(z2): 241-247.
[2] 郑海宇, 王琴, 王悦, 张瑞峰, 刘克俊. 环境温度对纤维素醚改性石膏工作性的影响[J]. 材料导报, 2021, 35(z2): 649-654.
[3] 吴磊, 陶忠, 赵志曼, 陶燕, 张毅, 刘卓. 基于NSGM(1,3)模型的短切聚丙烯纤维-磷建筑石膏复合材料强度预测[J]. 材料导报, 2021, 35(z2): 655-659.
[4] 刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
[5] 朱连诚, 冀志江, 解帅, 张远, 王静, 张琎珺, 李衎, 李飞. 三维立方周期阵列石膏基材料吸波性能仿真与实验研究[J]. 材料导报, 2021, 35(12): 12020-12026.
[6] 赵敏, 张明涛, 彭家惠, 黄谦, 赵亮. 硫铝酸盐水泥增强建筑石膏的力学性能与耐水性能机理[J]. 材料导报, 2021, 35(12): 12099-12102.
[7] 张立力, 华苏东, 诸华军, 顾增欢, 谷重, 赵益河. 高镁镍渣-磷石膏基胶凝材料固化和改良盐渍土的性能[J]. 材料导报, 2020, 34(9): 9034-9040.
[8] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[9] 宋涛, 杨杰, 赵松海, 尚海涛, 白超超. 石膏基自流平砂浆耐磨性能研究[J]. 材料导报, 2019, 33(Z2): 239-241.
[10] 赵红涛, 王树民, 刘志江, 张曼. 磷石膏矿化固定CO2制备高纯高白CaCO3[J]. 材料导报, 2019, 33(18): 3031-3034.
[11] 孙道胜, 程星星, 刘开伟, 王爱国, 张高展. 硫酸盐侵蚀下石膏的形成及破坏机制研究现状[J]. 材料导报, 2018, 32(23): 4135-4141.
[12] 解帅, 冀志江, 水中和, 侯国艳, 李彬, 王静. 三维织物石膏基微波吸收材料的制备及性能[J]. 材料导报, 2018, 32(18): 3123-3127.
[13] 栾扬,赵志曼,全思臣,曾众,吴佳丽,梁祎. 基于密度泛函理论研究磷建筑石膏晶体表面吸附丁二酸转晶机理[J]. 《材料导报》期刊社, 2018, 32(12): 2118-2123.
[14] 王博元, 姚武. 环保型石膏-水泥-火山灰胶凝体系的早期水化过程研究[J]. CLDB, 2017, 31(5): 123-127.
[15] 刘娟红, 李康, 宋少民, 卞立波. 石膏对石灰石粉水泥基材料水化及硬化性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 105-110.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed