Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 101-106    
  无机非金属及其复合材料 |
重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨
孙毅1, 李梦晗1, 王超1, 韩毅2, 李国栋2
1 中核核电运行管理有限公司,嘉兴 314000
2 中国辐射防护研究院,太原 030000
Discussion on Evaluation of X/γ Ray Shielding Performance for Heavy Metal Oxide Glass
SUN Yi1, LI Menghan1, WANG Chao1, HAN Yi2, LI Guodong2
1 CNNC Nuclear Power Operation Management, Jiaxing 314000, China
2 China Institute for Radiation Protection, Taiyuan 030000, China
下载:  全 文 ( PDF ) ( 4807KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在核能和核技术利用中,对辐射威胁进行屏蔽是控制场所剂量、保护人员健康的重要手段。目前主要屏蔽材料包括混凝土、铅以及其它各种合金、复合材料等;重金属氧化物玻璃可以兼具良好的屏蔽性能和透光性,因此在很多屏蔽应用场合受到青睐,而且由于玻璃成分类型的多样性,近年来开展了大量新型玻璃的开发和屏蔽性能研究工作,以进一步挖掘其应用价值。   本文梳理了国内外各类重金属氧化物玻璃X/γ射线屏蔽性能的研究报道,重点围绕质量衰减系数参数的获取,总结有关学者在理论计算、蒙特卡洛模拟以及实验测量中的基本方法、主要结论、实验条件以及误差情况等,从机理和数据比对的角度概括了重金属氧化物类玻璃共性的屏蔽性能特征和规律,并比较了三种方法的优缺点和在玻璃实际设计开发中的应用价值。   基于各类新型屏蔽玻璃研究文献,探讨和总结了现有研究工作中可参考的地方和存在的不足,给出了较为全面的重金属氧化物玻璃X/γ射线屏蔽性能研究思路,可为后续的研究提供有意义的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙毅
李梦晗
王超
韩毅
李国栋
关键词:  辐射  屏蔽材料  重金属氧化物玻璃  质量衰减系数  蒙特卡洛    
Abstract: In the utilization of nuclear energy and technology, shielding the radiation threat is an important means to control the dose at the site and protect the health of personnel. At present, the main shielding materials include concrete, lead and other alloys and composite materials; Heavy metal oxide glass has both good shielding performance and light transmittance, which is favored in many shielding applications. In recent years, due to the diversity of glass composition types, a large number of new glass development and shielding performance research work have been carried out to further tap its application value. In this paper, the research reports on X/γ ray shielding performance of various heavy metal oxide glasses at home and abroad are combed. Focusing on the acquisition of mass attenuation coefficient parameters, the basic methods, main conclusions, experimental conditions and errors in theoretical calculation, Monte Carlo simulation and experimental measurement are summarized. The common shielding performance characte-ristics and laws of heavy metal oxide glasses are summarized from the perspective of mechanism and data comparison, and the advantages and disadvantages of the three methods and their application value in the actual design and development of glasses are compared. Based on the research literatures of various new shielding glasses, this work discusses and summarizes the reference points and shortcomings in the existing research work, and gives a more comprehensive research idea of X/γ-ray shielding performance of heavy metal oxide glasses, which can provide a meaningful reference for subsequent research.
Key words:  radiation    shielding material    heavy metal oxide glass    mass attenuation coefficient    Monte Carlo
                    发布日期:  2021-12-09
ZTFLH:  O48 O571 O61  
通讯作者:  letgoaldone@163.com   
作者简介:  孙毅,2011年毕业于哈尔滨理工大学测控技术与仪器专业,任职于中核核电运行管理有限公司,辐射防护工程师。
李国栋,中国辐射防护研究院助理研究员,研究方向为辐射防护。
引用本文:    
孙毅, 李梦晗, 王超, 韩毅, 李国栋. 重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨[J]. 材料导报, 2021, 35(z2): 101-106.
SUN Yi, LI Menghan, WANG Chao, HAN Yi, LI Guodong. Discussion on Evaluation of X/γ Ray Shielding Performance for Heavy Metal Oxide Glass. Materials Reports, 2021, 35(z2): 101-106.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/101
1 Kok B, Benli H. Renewable Energy, 2017, 111, 870.
2 Akleyev A V.Radiation Protection Dosimetry, 2016, 171(1), 107.
3 韩毅, 陈法国, 于伟跃,等. 材料导报, 2015(S2),483.
4 Al-Humaiqani M M, Shuraim A B, Hussain R R. Asian Transactions on Engineering, 2013, 3(2),18.
5 McCaffery J P, Shen H, Downton B, et al.Medical Physics, 2007, 34(2),530.
6 Obaid S S, Gaikwad D K, Pawar P P. Radiation physics and chemistry,2018, 144, 356–360.
7 沈华亚, 陈法国, 韩毅,等. 材料导报, 2019, 33(S02),484.
8 Intom S, Kalkornsurapranee E, Johns J, et al. Radiation Physics and Chemistry, 2020, 172, 108772.
9 Oto B, Kavaz E, Durak H, et al. Ceramics International, 2019, 45(17),23681.
10 Sayyed M I, Elhouichet H. Radiation Physics and Chemistry, 2017, 130, 335.
11 El-Kameesy S Y, El-Ghany S A, Azooz M A E, et al. World Journal of Condensed Matter Physics, 2013, 3(4), 198.
12 Ahmed M R, Ashok B, Ahmmad S K, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 308.
13 Mariyappan M, Marimuthu K, Sayyed M I, et al. Journal of Non-Crystalline Solids, 2018, 499,75.
14 Singh N, Singh K J, Singh K, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 225(3), 305.
15 https://physics.nist.gov/PhysRefData/XrayMassCoef/chap2.html
16 Gerward L, Guilbert N, Jensen K B, et al. Radiation Physics and Chemi-stry, 2004, 71(3-4), 653.
17 Mann N, Kaur U, Singh T, et al. American Institute of Physics, 2010, 1324(1), 407.
18 Nowotny R. https://xueshu.baidu.com/usercenter/paper/show?paperid=c57e0f73e30431e17d5060f55e2c0835&site=xueshu_se.
19 Şakar E, Özpolat Ö F, Al¹m B, et al. Radiation Physics and Chemistry, 2020,166,108496.
20 Alhammashi M A R, ALattabi H D, Aldhuhaibat M J R. IOP Conference Series: Materials Science and Engineering,2020, 928(7),072077.
21 Al-Hadeethi Y, Sayyed M I.Ceramics International, 2019, 45(18),24858.
22 Al-Buriahi M S, Tonguç B, Perişanoğlu U, et al. Ceramics International, 2020, 46(15),23347.
23 Creagh D C, Hubbell J H. Acta Crystallographica Section A: Foundations of Crystallography, 1987, 43(1), 102.
24 Susoy G, Guclu E E A, Kilicoglu O, et al. Materials Chemistry and Physics, 2020, 242, 122481.
25 Dong M G, Agar O, Tekin H O, et al. Composites Part B: Engineering, 2019, 165, 636.
26 Issa S A M, Mostafa A M A. Journal of Alloys & Compounds, 2017, 695,302.
27 Aee A, Mb B, Mee A, et al.Progress in Nuclear Energy, 2018, 104,280.
28 Kaky K M, Sayyed M I, Khammas A, et al. Materials Chemistry and Physics, 2019, 242,122504.
29 Kaewjang S, Maghanemi U, Kothan S, et al.Nuclear Engineering & Design, 2014, 280,21.
30 Shamshad L, Rooh G, Limkitjaroenporn P, et al.Progress in Nuclear Energy, 2017, 97,53.
31 El-Khayatt A M, Ali A M, Singh V P. Nuclear Instruments and Methods in Physics Research, Section A Accelerators Spectrometers Detectors and Associated Equipment, 2014, 735,207.
32 Kurudirek M.Journal of Alloys and Compounds, 2017, 727, 1227.
33 Ruengsri S.Science & Technology of Nuclear Installations, 2014, 2014,1.
[1] 李彬, 李娜, 黄一凡, 王强, 张晓东. 单粒子效应的激光模拟方法研究进展[J]. 材料导报, 2021, 35(21): 21195-21201.
[2] 李培, 秦亮, 何红, 张亚军. 含SiO2/SiC可昼夜降温辐射冷却膜的制备与实验研究[J]. 材料导报, 2021, 35(14): 14185-14189.
[3] 米海娜, 于建芳, 王哲, 张涛, 郭继然, 王喜明. 具有保健功效木材的制备及其特性研究进展[J]. 材料导报, 2021, 35(11): 11215-11221.
[4] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[5] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[6] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[7] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[8] 闫民杰, 刘梁森, 陈莉, 刘丽研, 荆妙蕾, 徐志伟, 姜亚明, 傅宏俊. 基于碳纳米管界面改性的碳纤维复合材料抗γ辐射性能研究[J]. 材料导报, 2019, 33(24): 4174-4180.
[9] 仝博, 李永清, 朱锡, 张焱冰. 复合材料夹芯圆柱壳水下振声性能试验研究[J]. 材料导报, 2019, 33(10): 1728-1733.
[10] 王仕发,李丹明,肖玉华,杨震春,李居平,郝 剑,杨长青. 用于空间辐射环境探测的金刚石探测器研究综述[J]. 《材料导报》期刊社, 2018, 32(9): 1459-1468.
[11] 何林, 蔡永军, 李强. 中子和伽马射线综合屏蔽材料研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1107-1113.
[12] 周璐, 马红和, 马素霞, 杜慧娟. 用于太阳能集热介质的纳米铜制备技术与铜纳米流体性能综述[J]. 材料导报, 2018, 32(15): 2576-2583.
[13] 蒋丹枫, 王国辉, 李婷婷, 何帆, 戴耀东. NBR/PVC橡塑合金辐射防护材料的制备及性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 56-60.
[14] 刘国熠,刘元军,赵晓明. 消防避火服外层织物辐射热防护效能研究*[J]. 材料导报编辑部, 2017, 31(22): 116-120.
[15] 鲍艳, 封彩萍. 亚微级氧化锌空心球的制备及其光催化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 42-49.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed