Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1728-1733    https://doi.org/10.11896/cldb.17100158
  金属与金属基复合材料 |
复合材料夹芯圆柱壳水下振声性能试验研究
仝博, 李永清, 朱锡, 张焱冰
海军工程大学舰船工程系,武汉 430033
Underwater Vibro-acoustic Behavior of Composite Cylindrical Shell with Sandwich Structure: an Experimental Study
TONG Bo, LI Yongqing, ZHU Xi, ZHANG Yanbing
Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033
下载:  全 文 ( PDF ) ( 11323KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了评估复合材料夹芯圆柱壳的振动和声辐射特性,专门设计了一个复合夹芯圆柱壳模型以及一个等质量的钢壳作为对比模型,进行水下振动和声辐射试验。试验结果表明:吸声壳和钢壳前七阶固有频率测试值与有限元仿真结果吻合较好,说明了实验结果的可靠性。钢壳和复合材料壳频响测试曲线与数值仿真结果在低频段的吻合程度更高,且钢壳频响测试曲线与有限元计算曲线吻合程度优于复合材料夹芯壳。从复合材料夹芯壳的减振效果来看,试验测试平均减振18.3 dB,数值计算结果平均减振18.9 dB,说明该芯材壳体具有良好的阻尼性能。从复合材料夹芯壳低频段的吸声效果来看,八个方位角处声压级最大降幅为5.05 dB,平均降幅为2.28 dB,表明该复合材料夹芯圆柱壳能够有效抑制低频线谱噪声。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仝博
李永清
朱锡
张焱冰
关键词:  复合材料  夹芯壳  振动  声辐射    
Abstract: Aiming at evaluating the vibro-acoustic behavior of composite cylindrical shell with sandwich structure, a sandwich shell model with sound-absorbing core was designed, as well as a steel shell with equal weight for comparison. And the underwater vibration and sound radiation experiments were carried out. The experimental results revealed that the tested values of the first seven natural frequencies of both composite sandwich shell and steel shell were in good agreement with the simulated results based on finite element simulation, which verified the reliability of experiment results. The frequency response test curves of both steel shell and composite sandwich shell were consistent with the numerical simulation results in low frequency range, and the agreement in tested and simulated curves of steel shell was superior to that of composite sandwich shell. In terms of the vibration reduction effect of composite sandwich shell, there were the average reduction capacity of 18.3 dB and 18.9 dB by experimental test and numerical calculation, respectively, which showed the favorable damping performance of the sound-absorbing core. Concerning the sound absorption effect of sound absorption shell in low frequency range, there was a maximum decreasing amplitude of 5.05 dB in sound pressure level (SPL) at 8 directional angles, with an average decreasing amplitude of 2.28 dB, which indicated the effectiveness of this composite sandwich shell in reducing low frequency line-spectrum noise.
Key words:  composite materials    sandwich shell    vibration    sound radiation
                    发布日期:  2019-05-16
ZTFLH:  U663.9  
  TH128  
基金资助: 国家自然科学基金(50979110)
通讯作者:  liyongqing@126.com   
作者简介:  仝博,2018年毕业于海军工程大学,并获得工学博士学位。主要从事船用复合材料及其应用方面的研究。李永清现为海军工程大学副教授,2008年毕业于海军工程大学舰船系,主要从事船用复合材料及其工程应用研究。
引用本文:    
仝博, 李永清, 朱锡, 张焱冰. 复合材料夹芯圆柱壳水下振声性能试验研究[J]. 材料导报, 2019, 33(10): 1728-1733.
TONG Bo, LI Yongqing, ZHU Xi, ZHANG Yanbing. Underwater Vibro-acoustic Behavior of Composite Cylindrical Shell with Sandwich Structure: an Experimental Study. Materials Reports, 2019, 33(10): 1728-1733.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17100158  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1728
1 Cao L,Tao Q S. Journal of Hunan Institute of Engineering,2015,25(4),32 (in Chinese).
曹亮,陶庆水.湖南工程学院学报,2015,25(4),32.
2 Guo M T. Experimental study on composite thin-walled cylindrical shell vibration of composite materials. Master’s Thesis,Northeastern University,China, 2008 (in Chinese).
郭明涛.复合材料薄壁圆柱壳振动实验研究.硕士学位论文,东北大学,2008.
3 Petitjean B,Legrain I. Journal of Sound and Vibration,2002,252(1),19.
4 Honghao Y,Yifan L. Mechanical Systems and Signal Processing,2017,82,279.
5 Hemmatnezhad M,Rahimi G H. Composite Structures,2015,120,509.
6 Bo B Nielsen, Martin S Nielsen.Journal of Intelligent Material Systems and Structures,2017 ,28(1),78.
7 Zhao L S, Song F Y.Materials Review,2015,29(Z1),98 (in Chinese).
赵龙胜,宋福英.材料导报,2015,29(专辑),98.
8 Rawad A, Georges D. In:Conference Record of the AIP Conference Proceedings. Paris,France,2017,pp.1814.
9 Sang K L, Myung W K.International Journal of Mechanical Sciences,2016,117,162.
10 Yin Xuewen. Study on vibration and acoustic radiation from (laminatated composite) cylindrical shells. Ph.D. Thesis, Shanghai Jiao Tong University,China, 2008 (in Chinese).
殷学文.(多层复合)圆柱壳体的振动和声辐射研究.博士学位论文,上海交通大学,2008.
11 Bo Tong, Xi Zhu Li Yongqing, et al. In: The 2th China Functional Material Technology and Industry Forum. Chongqing, 2017,pp.249
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 张博强, 吴心平, 陈慧勇, 魏凤春, 朱丽峰, 李振涛, 李良. 局域共振型声子晶体在轮边驱动客车上的应用研究初探[J]. 材料导报, 2019, 33(z1): 141-144.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[11] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[12] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[13] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[14] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[15] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed