Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 429-433    
  金属与金属基复合材料 |
钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究
刘子林, 林德海, 何发泉, 曹子雄, 王宝冬
北京低碳清洁能源研究院,北京 102211
Study of Leaching Mechanism and Kinetics of Vanadium and Tungsten on the Process of Recovery Spent SCR Catalyst by Sodium Roasted
LIU Zilin, LIN Dehai, HE Faquan, CAO Zixiong, WANG Baodong
National Institute of Clean and Low-carbon Energy, Beijing 102211, China
下载:  全 文 ( PDF ) ( 3475KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 鉴于废烟气脱硝催化剂具有浸出毒性的危险特性,环境保护部明确将废烟气脱硝催化剂纳入危险废物进行管理,同时由于废催化剂中含有高价值的钒钨钛成分,对废脱硝催化剂的资源化回收技术的研究成为近年来环保领域的热点。钠化焙烧可以破坏废催化剂原有的组织结构,使其中钒钨发生相变而提高浸出率,工艺简单,因此适用性广。2012年Kim等就采用钠化焙烧-水浸工艺回收废SCR催化剂中的钒和钨,并对焙烧过程机理进行研究,但目前对于钒钨浸出过程机理尚未有人研究。
本工作是为了探究废SCR催化剂焙烧后浸出过程的反应机理,研究反应过程的控制条件,并进一步研究浸出过程动力学,从而使钒钨浸出反应的过程清晰明了,为提高浸出经济性提供理论基础。利用X射线衍射(XRD)和扫描电镜(SEM)对焙烧后样品的物相和形貌进行了分析,基于此设计了浸出过程的动力学模型,推导反应过程浸出方程,并通过浸出过程实验结果对浸出方程的参数进行推导。研究结果表明,焙烧后的试样呈柱状烧结相和针状非烧结相,两种相间几乎是完全分离的,钒、钨等主要存在于柱状烧结相中,因此适合对其进行直接水浸处理,使钒和钨溶出;根据焙烧形貌和假设,采用非端面柱状缩合模型推导了浸出过程动力学方程,得出浸出率和时间的函数关系。通过单因素实验确定了最佳的浸出条件为:液固比3∶1,浸出温度为80 ℃,搅拌速率为350 r/min,时间为30~40 min,此时钒和钨的回收率分别为90.07%和84.57%;通过回收率与浸出时间的关系换算出浸出率和时间的关系,并推导出钒、钨的浸出动力学方程为ηV=0.001 05t2+0.066 2t+0.014 66和ηW=0.001 00t2+0.064 12t+0.014 91。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘子林
林德海
何发泉
曹子雄
王宝冬
关键词:  废SCR催化剂  钠化焙烧  钒钨回收  动力学    
Abstract: In view of the hazardous characteristics of waste flue gas SCR catalyst, such as leaching toxicity, etc, the ministry of environmental protection clearly put wasted SCR catalyst into hazardous waste management. At the same time, the wasted catalyst contains high-value components of vanadium, tungsten and titanium, so the research of the recycling technology about waste SCR catalyst has become a hotspot in the field of environmental protection in recent years. The method of sodium roasting can destroy the original structure of wasted catalyst, and improve the leaching rate by the phase changing of vanadium and tungsten. The process is simple and easy to control, so it has widely applicability. In 2012, Kim et al. adopted sodium roasting-water leaching process to recover vanadium and tungsten, and studied the mechanism of roasting process. However, the mechanism of V-W leaching has not been studied.
The purpose of this work is to explore the reaction mechanism of the leaching process after sodium roasting of wasted SCR catalyst, study the control conditions of the reaction process, and further study the kinetics of the leaching process. Thus, the leaching process of vanadium and tungsten is revealed, which is contribution to provide the theoretical basis for improving the economy of leaching. The analytical method of XRD and SEM were used to study the phase and morphology of the roasted samples. Based on this, the kinetic model of leaching process was designed, the leaching equation of reaction process was deduced, and the parameters of the leaching equation were deduced through the experimental results of leaching process. The results showed that the roasted samples are in the form of columnar sintered phase and acicular non sintered phase, and the two phases are almost completely separated. Vanadium and tungsten mainly exist in the columnar sintered phase, so it is suitable for direct water leaching to dissolve vanadium and tungsten. According to the shape and hypothesis of calcination, the kinetic equation of leaching process was derived by using the “column non end condensation model”, and the function relationship between leaching rate and time was obtained. Through single factor experiment, the best leaching conditions were determined as follows: liquid-solid ratio 3∶1, leaching temperature 80 ℃, stirring rate 350 r/min, time 30—40 min, at this point, the recovery of tungsten and vanadium were 90.07% and 84.57%, respectively; Through the relationship between recovery and leaching time, the relationship between leaching rate and time was converted, and the leaching kinetics equation of vanadium and tungsten was derived: ηV=-0.001 05t2+0.066 2t+0.014 66 and ηw=-0.001 00t2+0.064 12t+0.014 91.
Key words:  spent SCR catalyst    soda roasted process    recovery of V and W    kinetic study
                    发布日期:  2021-07-16
ZTFLH:  X773  
通讯作者:  baodong.wang.d@chnenergy.com.cn   
作者简介:  刘子林,硕士,国家能源集团北京低碳清洁能源研究院,国家重大专项子课题负责人,从事SCR脱硝催化剂方面的研究,主要研究方向为:废烟气脱硝催化剂回收工艺;失活烟气脱硝催化剂再生过程;脱硝催化剂性能检测。王宝冬,博士,教授级高工,国家能源集团北京低碳清洁能源研究院,环保领域技术总监,从事大气污染治理领域的研发工作。曾主持国家科技部和工业研发项目十多项,获国家专利银奖1项、省部级科技一等奖4项、以第一或通讯作者身份发表论文98篇、专利110项。主要成果在燃煤电厂及非电行业实现了氮氧化物减排的工业化应用。曾获得青年千人计划、杰出工程师青年奖、中国煤炭青年科学技术奖、侯德榜化工科技青年奖、牛顿基金中英创新领军人才等奖励。
引用本文:    
刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
LIU Zilin, LIN Dehai, HE Faquan, CAO Zixiong, WANG Baodong. Study of Leaching Mechanism and Kinetics of Vanadium and Tungsten on the Process of Recovery Spent SCR Catalyst by Sodium Roasted. Materials Reports, 2021, 35(Z1): 429-433.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/429
1 孟刘邦, 房晶瑞, 管学茂. 材料导报:研究篇, 2017, 31(7), 35.
2 Joung Woon Kim, Won Geun Lee, In Sung Hwang, et al. Journal of Industrial and Engineering Chemistry, 2015, 28, 73.
3 Blanco J, Avila P, Suárec S, et al. Chemical Engineering Journal, 2004, 97(1), 1.
4 杨勇平, 杨志平, 徐钢, 等. 中国电机工程学报, 2013, 33(23),1.
5 马光路. 化工管理, 2015(35), 221.
6 方华, 韩静, 李守信. 中国环保产业, 2010(4), 37.
7 曾瑞. 中国环保产业, 2013(2), 39.
8 Huo Y T, Chang Z D, Li W J, et al. Waste Biomass Valor, DOI: 10.1007/s12649-014-9335-2.
9 Yang B, Zhou J B, Wang W W, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601,1.
10 Lou W B, Zhang Y, Zheng S L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 187, 45.
11 Hong-In Kim, Ki-Woong Lee, Debaraj Mishra, et al. Journal of Indust-rial and Engineering Chemistry, 2014, 20, 4457.
12 Gerald L Z, Nathan A O, Christopher M C. Atmospheric Environment, 2015, 104, 154.
13 Ceren Erust, Ata Akcil, Zyuldyz Bedelova, et al. Waste Management, 2016, 49, 455.
14 Xiao Y T, Zhao J X, Wang D Z, et al. 中国专利, 102732730A, 2012.
15 Chen Y, Feng Q M, Shao Y H, et al. International Journal of Miner Process, 2006, 79, 42.
16 Li Q C, Liu Z Y, Liu Q Y. I&EC Research, 2014, 53, 2956.
17 Nikiforova A, Kozhura O, Pasenko O. Hydrometallurgy, 2016, 164, 31.
18 Khalid M M, Safa K K. Iraqi Journal of Chemical and Petroleum Engineering, 2010, 11(2), 49.
19 刘子林, 王宝冬, 马瑞新, 等. 无机盐工业, 2016, 48(7), 63.
20 刘焕群. 中国资源综合利用, 2000(12), 35.
21 阙再青, 李克非, 刘洋, 等. 北 京科技大学学报, 2012, 34(8), 931.
22 何东升. 石煤型钒矿焙烧一浸出过程的理论研究. 博士学位论文, 中南大学, 2009.
23 Barry R B, Dirk B, Miehael F, et al. American Mineralogist, 2001, 86(4), 411.
[1] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[2] 张济涛, 耿健, 李东, 朱浩泽. 蒸养条件下硅酸三钙(C3S)水化热动力学特性研究[J]. 材料导报, 2021, 35(8): 8064-8069.
[3] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[4] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[5] 张丰, 白银, 蔡跃波. 5 ℃养护下甲酸钙对水泥早期水化的影响[J]. 材料导报, 2021, 35(10): 10055-10061.
[6] 寇佩佩, 冯瑞成, 李海燕, 李龙龙. 晶向和温度对含孔洞单晶TiAl-Nb合金断裂行为的影响[J]. 材料导报, 2021, 35(10): 10114-10119.
[7] 单国雷, 王龙, 孙元, 陈振斌, 李晓明, 张洪宇, 裴逍遥. 镍基单晶高温合金资源中关键金属的浸出行为研究[J]. 材料导报, 2021, 35(10): 10134-10140.
[8] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[9] 李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412-417.
[10] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[11] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[12] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[13] 刘伟, 崔升, 李建平, 叶欣, 尚思思, 杨照军, 沈晓冬. 气凝胶吸油材料的研究进展[J]. 材料导报, 2020, 34(9): 9019-9027.
[14] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[15] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed