Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10134-10140    https://doi.org/10.11896/cldb.20040013
  金属与金属基复合材料 |
镍基单晶高温合金资源中关键金属的浸出行为研究
单国雷1,2,3,4, 王龙3,5, 孙元3,5, 陈振斌1,2, 李晓明4,6, 张洪宇3,5, 裴逍遥3,5
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
3 高温合金二次资源绿色综合利用联合创新实验室,沈阳 110016
4 甘肃银光化学工业集团有限公司,白银 730900
5 中国科学院金属研究所,沈阳 110016
6 兰州理工大学白银新材料研究院,白银 730900
Study on the Leaching Behavior of Key Metals in Nickel-based Single Crystal Superalloy Scraps
SHAN Guolei1,2,3,4, WANG Long3,5, SUN Yuan3,5, CHEN Zhenbin1,2, LI Xiaoming4,6, ZHANG Hongyu3,5, PEI Xiaoyao3,5
1 College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 Joint Innovation Laboratory for Green Comprehensive Utilization of Superalloy Secondary Resources, Shenyang 110016, China
4 Gansu Yinguang Chemical Industry Group Co. Ltd., Baiyin 730900, China
5 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
6 Baiyin Research Institute of Novel Materials of Lanzhou University of Technology, Baiyin 730900, China
下载:  全 文 ( PDF ) ( 2871KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以镍基单晶高温合金磨削废料为研究对象,选用常压三元氧化酸浸体系实现了高温合金的快速溶解,考察了搅拌速率、浸出时间、盐酸、硝酸和双氧水等因素对关键金属浸出率的影响。结果表明,当V(HNO3)/V(H2O)=0.24、V(H2O2)/V(H2O)=0.24、V(HCl)/V(H2O)=2、搅拌速率为200 r/min、浸出时间为3 min时,Ni、Co、Cr、Re的浸出率均达到了95%以上,W的浸出率为53%。基于上述结果进一步研究了关键金属在该体系中的浸出动力学模型、赋存状态、氧化溶解机制和浸出渣的主要组成。研究发现Ni、Co、Cr、Re和W的浸出均符合化学控制模型,总的浸出速率受化学反应速率控制,Ni、Co、Cr、Re主要以MxCly的形式存在,而W以钨酸盐的形式存在。浸出渣主要由WO3、TaO和Ta2O5组成。此外,结果还表明浸出渣中各物相的含量与浸出液中各离子的含量成反比,说明浸出过程研究结果具有可靠性和有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
单国雷
王龙
孙元
陈振斌
李晓明
张洪宇
裴逍遥
关键词:  镍基单晶高温合金    氧化浸出  赋存状态  动力学    
Abstract: The rapid leaching of key metals was carried out in atmospheric ternary oxide leaching system from nickel-based single crystal superalloy scrap. Experimental factors involved in the leaching process, including stirring speed, leaching time, volume of hydrochloric acid, nitric acid and hydrogen peroxide were studied. The results show that the leaching ratio of Ni, Co, Cr, and Re was higher than 95%, and the leaching ratio of W was 53% under conditions at V(HNO3)/V(H2O) of 0.24, V(H2O2)/V(H2O) of 0.24, V(HCl)/V(H2O) of 2, stirring speed at 200 r/min, and leaching time of 3 min. Based on the above results, the kinetic model of leaching process, the occurrence state of key metals, oxidation dissolution mechanism and main components of leaching residue of superalloy scraps were further discussed. The results revealed that the chemical control model was more suitable to describe leaching behavior of Ni, Co, Cr, Re, W. The key metals, such as Ni, Co, Cr and Re, mainly existed as MxCly form, and the W was in form of tungstate. While the main components of leaching residue were WO3, TaO and Ta2O5. Besides, the content of each substance in leaching residue was inversely proportional to the content of corresponding ion in leaching solution.
Key words:  nickel-based single crystal superalloy    rhenium    oxidation leaching    existent state    kinetics
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TF841.8  
基金资助: 沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金(18LHZD003);航空动力基金(DLJJ825);中国科学院特别研究助理资助项目(E055A101)
通讯作者:  yuansun@imr.ac.cn   
作者简介:  单国雷,2018 年 6 月毕业于兰州理工大学,获得工学学士学位。现为兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室硕士研究生,在陈振斌教授的指导下进行研究。目前主要研究领域为高温合金废料回收再利用。
孙元,中国科学院金属研究所副研究员。1996—2011年在哈尔滨工业大学学习并取得学士学位、硕士学位及博士学位,期间曾在日本大阪大学进行留学研究工作,2011—2013年在中国科学院金属研究所从事博士后研究工作。目前主要研究领域为高温合金回收与再利用。
引用本文:    
单国雷, 王龙, 孙元, 陈振斌, 李晓明, 张洪宇, 裴逍遥. 镍基单晶高温合金资源中关键金属的浸出行为研究[J]. 材料导报, 2021, 35(10): 10134-10140.
SHAN Guolei, WANG Long, SUN Yuan, CHEN Zhenbin, LI Xiaoming, ZHANG Hongyu, PEI Xiaoyao. Study on the Leaching Behavior of Key Metals in Nickel-based Single Crystal Superalloy Scraps. Materials Reports, 2021, 35(10): 10134-10140.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040013  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10134
1 Singh G R P, Wolfe T A, Braymiller S A. International Journal of Refractory Metals & Hard Materials, 2015, 50, 79.
2 Chen C J, Chen Z B, Sun Y, et al. Materials Reports A: Review Papers, 2019, 33(11), 3654(in Chinese).
陈长军, 陈振斌, 孙元,等. 材料导报:综述篇, 2019, 33(11), 3654.
3 Hori H, Yoshimura Y, Otsu T, et al.Separation and Purification Techno-logy, 2015, 156, 242.
4 Anderson C D, Taylor P R, Anderson C G.Mining, Metallurgy & Exploration, 2013, 30(1), 59.
5 Srivastava R R, Kim M, Lee J.Industrial & Engineering Chemistry Research, 2016, 55(29), 8191.
6 Huang M, Zhu J.Rare Metals, 2016, 35(2), 127.
7 Korzhinsky M A, Tkachenko S I, Shmulovich K I, et al.Nature, 1994, 369(6475), 51.
8 Cheema H A, Ilyas S, Masud S, et al.Separation and Purification Technology, 2018, 191, 116.
9 Reed R C.The superalloys: fundamentals and applications, Cambridge University Press, UK, 2006.
10 Shipachev V A.Chemistry for Sustainable Development, 2012, 20(3), 323.
11 Angelidis T N, Rosopoulou D, Tzitzios V.Industrial & Engineering Che-mistry Research, 1999, 38(5), 1830.
12 Nguyen T H, Truong H T, Lee M S.Korean Journal of Metals and Mate-rials, 2017, 55(10), 724.
13 Laatikainen M, Virolainen S, Paatero E,et al. Separation and Purification Technology, 2015, 153, 19.
14 Vadasdi K, Kele A, Szilassy I, et al. International Journal of Refractory Metals and Hard Materials, 1993, 12(6), 369.
15 Stoller V, Olbrich A, Meese M J, et al. US patent, US20030136685 A1. 2003.
16 Song Z Y. Electrochemical dissolution behavior of a nickel-based superalloy in the process of hydrometallurgy. Master's Thesis, University of Chinese Academy of Sciences, China, 2017(in Chinese).
宋增益. 一种镍基高温合金湿法冶金过程中的电化学溶解行为研究.硕士学位论文, 中国科学院大学, 2017.
17 Mamo S K, Elie M, Baron M G, et al. Separation & Purification Techno-logy, 2018, 212, 150.
18 Zhang B, Wang J, Wu B, et al.Nature Communications, 2018, 9(1), 1.
19 Chen Y L, Wang A D, Zhang Y, et al.Materials Reports A: Review Papers, 2018, 32(5), 1549(in Chinese).
陈跃良, 王安东, 张勇,等. 材料导报:综述篇, 2018, 32(5), 1549.
20 Xing X M, Li X Y, Gao L J, et al. Zhejiang Chemical Industry, 2019, 50(9), 11(in Chinese).
邢攸美, 李潇逸, 高立江,等. 浙江化工, 2019, 50(9), 11.
21 Basir S M A, Rabah M A.Hydrometallurgy, 1999, 53(1), 31.
22 Yang X W, Qiu D F.Hydrometallurgy, Metallurgical Industry Press, China, 1998 (in Chinese).
杨显万, 邱定蕃. 湿法冶金, 冶金工业出版社, 1998.
23 Guo Y. Study on mass transfer phenomena across a moving interface of gas-liquid system. Ph.D. Thesis, Tianjin University, China, 2007(in Chinese).
郭莹.气液系统移动界面传质现象研究. 博士学位论文, 天津大学, 2007.
24 Mamo S K, Elie M, Baron M G, et al. Separation and Purification Technology, 2019, 212, 150.
25 Fan X, Xing W, Dong H, et al. International J ournal of Nonferrous Metallurgy, 2013, 2(2), 63.
26 Zhu B Z, Chen X N, Li Z J.Complex chemistry, Central Plains Farmers Publishing House, China, 1994(in Chinese).
朱伯仲, 陈学年, 李中军. 配合物化学, 中原农民出版社, 1994.
27 Sun T. Inorganic chemistry, Metallurgical Industry Press, China, 2015(in Chinese).
孙挺. 无机化学, 冶金工业出版社, 2015.
28 Wang J K, Meng H Q, Wang Z J, et al.Nonferrous Metals(Extractive Metallurgy), 2014(5), 1(in Chinese).
王靖坤, 孟晗琪, 王治钧,等. 有色金属(冶炼部分), 2014(5), 1.
29 Yao S Z, Zhu Y B. Element chemistry handbook, Hunan Education Publishing House, China, 1998(in Chinese).
姚守拙, 朱元保. 元素化学反应手册, 湖南教育出版社, 1998.
30 Ding Y R, Ma Y, Zhang W J, et al.Journal of Rare Earths, 2019, 37(4), 457(in Chinese).
丁艳蓉, 马莹, 张文娟,等. 中国稀土学报, 2019, 37(4), 457.
31 Hu Z Y, Li L C, Cheng M Q.Journal of Anshun University, 1999(4), 70(in Chinese).
胡宗元, 李良超, 程孟琪.安顺师专学报, 1999(4), 70.
32 Zang S L.Chemistry and application of rare-scattered elements, China Petrochemical Press, China, 2008(in Chinese).
臧树良. 稀散元素化学与应用, 中国石化出版社, 2008.
33 Wu J H, Su T, Liu G, et al.The Chinese Journal of Process Engineering, 2015, 15(3), 406(in Chinese).
邬建辉, 苏涛, 刘刚,等. 过程工程学报, 2015, 15(3), 406.
[1] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[2] 张济涛, 耿健, 李东, 朱浩泽. 蒸养条件下硅酸三钙(C3S)水化热动力学特性研究[J]. 材料导报, 2021, 35(8): 8064-8069.
[3] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[4] 张丰, 白银, 蔡跃波. 5 ℃养护下甲酸钙对水泥早期水化的影响[J]. 材料导报, 2021, 35(10): 10055-10061.
[5] 寇佩佩, 冯瑞成, 李海燕, 李龙龙. 晶向和温度对含孔洞单晶TiAl-Nb合金断裂行为的影响[J]. 材料导报, 2021, 35(10): 10114-10119.
[6] 吴博宇, 徐玉平, 吕一鸣, 卢棚, 李小椿, 周海山, 刘松林, 罗广南. 嬗变元素Re、Os对聚变装置面向等离子体钨材料性能的影响[J]. 材料导报, 2021, 35(1): 1154-1161.
[7] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[8] 李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412-417.
[9] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[10] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[11] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[12] 刘伟, 崔升, 李建平, 叶欣, 尚思思, 杨照军, 沈晓冬. 气凝胶吸油材料的研究进展[J]. 材料导报, 2020, 34(9): 9019-9027.
[13] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[14] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[15] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed