Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1168-1176    https://doi.org/10.11896/cldb.20030011
  金属与金属基复合材料 |
可降解医用金属功能化表面改性研究进展
李华芳1,2, 郑宜星1, 王鲁宁1,2
1 北京科技大学材料科学与工程学院,北京材料基因工程高精尖创新中心,北京 100083
2 北京科技大学新金属材料国家重点实验室,北京 100083
Research Progress on Functional Surface Modification of Biodegradable Metals
LI Huafang1,2, ZHENG Yixing1, WANG Luning1,2
1 Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering,University of Science and Technology Beijing, Beijing 100083, China
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 10654KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,以镁、铁、锌为代表的可降解医用金属由于其独特的体内降解性能和优异的生物相容性成为国内外研究热点。这类可降解医用金属能够在体内逐渐被体液腐蚀降解,它们所释放的腐蚀产物能够给机体带来恰当的宿主反应,当协助机体完成组织修复的任务后将全部被体液溶解,避免了二次手术。
   前期研究表明,三种可降解医用金属在实际临床应用中尚存在一些不足:镁及镁合金的体内降解速率过快,降解过程中产生的氢气会对植入物周围组织和细胞产生不利影响;铁及铁合金的体内降解速率过慢;锌及锌合金的降解速率最符合临床要求,但是其较低的力学性能限制了锌及其合金的应用。鉴于此,可降解医用金属的功能化表面改性技术应运而生。功能化表面改性技术不仅可以实现对可降解医用金属腐蚀行为的调控,还可根据不同的临床需求提高其生物相容性、抗菌活性、抗凝血性能和促成骨性能等。目前,各类表面改性技术已能够有效改善各类可降解医用金属的性能。镁及其合金是研究最为广泛的一类可降解医用金属,各类表面改性技术,如转化涂层、沉积涂层、复合物涂层等已能够显著降低镁及其合金的腐蚀速率。针对铁及其合金的表面改性技术主要以纯铁以及Fe-Mn合金为主,但目前针对铁及其合金的表面改性技术尚难以满足其理想的降解模式要求。锌及其合金是新一代可降解医用金属,现有的表面改性技术主要是为了增强其生物相容性和抗菌性能。
   本综述归纳了各类表面改性技术的特点,对各类技术的制备方法、应用及目的进行了介绍,并对其未来研究趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李华芳
郑宜星
王鲁宁
关键词:  可降解医用金属  表面改性  生物相容性  临床应用    
Abstract: In recent years, biodegradable metals, including magnesium-, iron- and zinc-based alloys, have become attractive research topics due to their excellent biodegradation performance and biocompatibility. Biodegradable metals can be degraded and absorbed by the human body during/after fulfilling the mission to assist with tissue healing and can avoid the requirement for a secondary removal surgery.
However, previous studies have shown that there are still some deficiencies in the practical clinical application of the three biodegradable metals. For example, the in vivo degradation rate of magnesium and magnesium-based alloy is too fast;on the other hand,the in vivo degradation rate of iron and iron-based alloy is too slow and the low mechanical properties of zinc and zinc-based alloys limit their application. In addition, as one kind of biomedical material, it is necessary to be afforded properties such as biocompatibility, wear resistance, corrosion resistance, appropriate mechanical properties, osseointegration, high hardness, ductility, and antibacterial activity according to different clinical applications. In order to improve the properties of biodegradable metals, approaches such as alloying, subsequent treatment and surface modification can be utilized. Nevertheless, it is difficult to control the local corrosion of implants and ensure the mechanical integrity of implants by adding alloying elements. Surface modification is the simplest and most effective method to improve the properties of biodegradable metals with low cost. In view of this aspect, functional surface modification technology of biodegradable metals has been introduced. Functional surface modification technology can not only control the corrosion behavior of biodegradable metals, but also improve their biocompatibility, antibacterial activity, anticoagulant activity, anticoagulant property and osteogenic properties according to different clinical requirements.
Currently, various surface modification techniques such as conversion coating, deposition coating, composite coating, etc. have been proved to be effective in improving the properties of biodegradable metals. Magnesium and magnesium-based alloys are the most widely studied biodegradable metals, and various modification technologies have been shown to significantly reduce the corrosion rate of magnesium alloys. The surface modification technology for iron and iron-based alloys mainly focuses on pure iron and Fe-Mn alloys, but the current surface modification technology is difficult to improve the biodegradation behavior. Zinc and its alloys are a new generation of biodegradable metals. The existing surface modification technology is mainly to enhance their biocompatibility and antibacterial properties.
In this review, we summarize the research on functional surface modification of biodegradable metals and the future research trend has been prospected as well.
Key words:  biodegradable metals    surface modification    biocompatibility    clinical applications
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金(31700819); 中国科协青年人才托举工程项目(2018QNRC001); 中央高校基本科研业务费(FRF-GF-19-007B)
作者简介:  李华芳,北京科技大学副教授、硕士研究生导师。2014年7月博士毕业于北京大学,2014—2018年在香港中文大学从事博士后研究工作。入选第四届“中国科协青年人才托举工程”。主要从事新型生物医用金属材料与器械的设计与开发、可降解金属及其表面改性等工作。近年来,在Nature Medicine、Biomaterials、Acta Biomaterialia等医用金属领域顶级TOP期刊发表论文50余篇。
引用本文:    
李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
LI Huafang, ZHENG Yixing, WANG Luning. Research Progress on Functional Surface Modification of Biodegradable Metals. Materials Reports, 2021, 35(1): 1168-1176.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030011  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1168
1 Asri R I M, Harun W S W, Samykano M, et al. Materials Science and Engineering: C,2017,77,1261.
2 Zheng Y F, Gu X N, Witte F. Materials Science and Engineering: R: Reports,2014,77,1.
3 Zheng Y F, Wu Y H. Acta Metallurgica Sinica,2017,53(3),257(in Chinese).
郑玉峰,吴远浩.金属学报,2017,53(3),257.
4 Li N, Zheng Y. Journal of Materials Science & Technology,2013,29(6),489.
5 Liu L, Yang Q, Huang L, et al. Applied Surface Science,2019,484,511.
6 Wang L N, Meng Y, Liu L J, et al. Acta Metallurgica Sinica,2017,53(10),1317.
王鲁宁,孟瑶,刘丽君,等.金属学报,2017,53(10),1317.
7 Su Y, Wang K, Gao J, et al. Acta Biomaterialia,2019,98,174.
8 Li H, Yang H, Zheng Y, et al. Materials & Design,2015,83,95.
9 Li H F, Shi Z Z, Wang L N. Journal of Materials Science & Technology,2020,46,136.
10 Chen H, Zhang E, Yang K. Materials Science and Engineering: C,2014,34,201.
11 Li H, Zheng Y, Qin L. Progress in Natural Science: Materials International,2014,24(5), 414.
12 Zou Y H, Wang J, Cui L Y, et al. Acta Biomaterialia,2019,98,196.
13 Wu H, Zhang C, Lou T, et al. Acta Biomaterialia,2019,98,152.
14 Yin Z Z, Qi W C, Zeng R C, et al. Journal of Magnesium and Alloys,2020,8(1),42.
15 Yan T, Tan L, Zhang B, et al. Journal of Materials Science & Technology,2014,30(7),666.
16 Saranya K, Kalaiyarasan M, Rajendran N. Surface and Coatings Techno-logy,2019,378,124902.
17 Prabhu D B, Gopalakrishnan P, Ravi K R. Journal of Alloys and Compounds,2020,812,152146.
18 Zhang X P, Zhao Z P, Wu F M, et al. Journal of Materials Science,2007,42(20), 8523.
19 Gu X N, Li N, Zhou W R, et al. Acta Biomaterialia,2011,7(4),1880.
20 Chen J, Zhang Y, Ibrahim M, et al. Colloids and Surfaces B: Bioin-terfaces,2019,179,77.
21 Aktug S L, Durdu S, Aktas S, et al. Surface and Coatings Technology,2019,375,46.
22 Chen X B, Nisbet D R, Li R W, et al. Acta Biomaterialia,2014,10(3),1463.
23 Pan Y K, Chen C Z, Wang D G, et al. Colloids and Surfaces. B, Bioin-terfaces,2013,109,1.
24 Cui L Y, Wei G B, Han Z Z, et al. Journal of Materials Science & Technology,2019,35(3),254.
25 Song Y, Zhang S, Li J, et al. Acta Biomaterialia,2010,6(5),1736.
26 Levy G, Aghion E. Acta Biomaterialia,2013,9(10),8624.
27 Catt K, Li H, Cui X T. Acta Biomaterialia,2017,48,530.
28 Xiong P, Yan J, Wang P, et al. Acta Biomaterialia,2019,98,160.
29 Xiong P, Jia Z, Zhou W, et al. Acta Biomaterialia,2019,92,336.
30 Wang Q, Tan L, Yang K. Journal of Materials Science & Technology,2015,31(8),845.
31 Li L Y, Cui L Y, Zeng R C, et al. Acta Biomaterialia,2018,79,23.
32 Jothi V, Adesina A Y, Kumar A M, et al. Surface and Coatings Techno-logy,2020,381,125139.
33 Li J A, Chen L, Zhang X Q, et al. Materials Science and Engineering: C,2020,109,110607.
34 Cui L Y, Qin P H, Huang X L, et al. Surface and Coatings Technology,2017,324,560.
35 Waksman R O N, Pakala R, Baffour R, et al. Journal of Interventional Cardiology,2008,21(1),15.
36 Zhu S F, Huang N, Xu L, et al. Surface and Coatings Technology,2009,203(10),1523.
37 Zhu S F, Huang N, Shu H, et al. Applied Surface Science,2009,256(1),99.
38 Cheng J, Huang T, Zheng Y F. Materials Science and Engineering: C,2015,48,679.
39 Qi Y, Li X, He Y, et al. ACS Applied Materials & Interfaces,2019,11(1),202.
40 Oriňaková R, Gorejová R, Orságová Králová Z, et al. Applied Surface Science,2020,505,144634.
41 Donik , Kocijan A, Paulin I, et al. Applied Surface Science,2018,453,383.
42 Wen Z, Zhang L, Chen C, et al. Materials Science and Engineering: C,2013,33(3),1022.
43 Mohd Daud N, Sing N B, Yusop A H, et al. Journal of Orthopaedic Translation,2014,2(4),177.
44 Su Y, Champagne S, Trenggono A, et al. Materials & Design,2018,148,124.
45 Drevet R, Zhukova Y, Kadirov P, et al. Metallurgical and Materials Transactions A,2018,49(12),6553.
46 Ray S, Thormann U, Eichelroth M, et al. Biomaterials,2018,157,1.
47 Yang C, Huan Z, Wang X, et al. ACS Biomaterials Science & Enginee-ring,2018,4(2),608.
48 Zhou J, Yang Y, Detsch R, et al. Applied Surface Science,2019,492,669.
49 Zhou C, Li H F, Yin Y X, et al. Acta Biomaterialia,2019,97,657.
50 Li H, Xie X, Zheng Y, et al. Scientific Reports,2015,5,10719.
51 Yuan W, Li B, Chen D, et al.ACS Biomaterials Science & Engineering,2019,5(2),487.
52 Yuan W, Xia D, Zheng Y, et al. Acta Biomaterialia,2020,105,290.
[1] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[2] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[3] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[4] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[5] 时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
[6] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[7] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[8] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[9] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[10] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[11] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[12] 曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
[13] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[14] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[15] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed