Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 74-77    
  无机非金属及其复合材料 |
掺杂金属元素对Fe3O4纳米材料磁性性质影响的研究进展
彭仁强1, 李娜1,2, 陈倩霞3
1 成都理工大学能源学院,成都610059
2 油气藏地质及开发工程国家重点实验室,成都 610059
3 成都理工大学材料与化学化工学院,成都 610059
Research Progress on the Influence of Doped Metal Elements on the Magnetism of Fe3O4 Nanometer Materials
PENG Renqiang1, LI Na1,2, CHEN Qianxia3
1 College of Energy, Chengdu University of Technology, Chengdu 610059, China
2 State Key Laboratory of Reservoir Geology and Development Engineering, Chengdu 610059, China
3 College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
下载:  全 文 ( PDF ) ( 2109KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自纳米材料受到广泛应用以来,对磁性(Fe3O4)纳米材料的研究日益增多,特别是在生物医学、污水处理等重要领域。其中主要研究方向是以Fe3O4纳米颗粒为基体,将金属元素掺入其中。目前,主要选用锰、钴、锌、镍、铜、铈、铕、钆元素作为掺杂元素掺入磁性(Fe3O4)纳米材料中,探究不同金属元素对磁性(Fe3O4)纳米材料各项性质的影响。本文首先将主要掺杂金属元素分为过渡元素和稀土元素,再结合大量文献归纳了掺杂不同金属元素的磁性(Fe3O4)复合纳米材料之间存在的磁性差异。分析了掺杂金属元素的磁性(Fe3O4)复合纳米材料面临的问题并展望其前景,为磁性(Fe3O4)复合纳米材料在各领域的生产和应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭仁强
李娜
陈倩霞
关键词:  掺杂  金属元素  Fe3O4  纳米材料  磁性    
Abstract: The research on magnetic (Fe3O4) nanometer materials is increasing Since nanometer materials are widely used, especially in the important fields of biomedicine and sewage treatment. At present, manganese, cobalt, zinc, nickel, copper, cerium, europium, and gadolinium are mainly used as doping elements to incorporate them into magnetic (Fe3O4) nanomaterials to explore the properties of different metal elements on magnetic (Fe3O4) nanomaterials. In this paper, the main doped metal elements are firstly divided into transition elements and rare earth elements, and then combined with a large number of literatures. Compared the magnetic differences between the different doped magnetic metal elements (Fe3O4) composite nanometer materials. The problems faced by the magnetic (Fe3O4) composite nanometer materials doped with metal elements are analyzed and their prospects are prospected, which provide references for the production and application of magnetic (Fe3O4) composite nanometer materials in various fields.
Key words:  doping    metal elements    Fe3O4    nanometer materials    magnetic property
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TB33  
基金资助: 国家自然科学基金委面上项目(2197040480)
通讯作者:  lina2013@cdut.cn   
作者简介:  彭仁强,2019年6月毕业于西南石油大学,获得工学学士学位。现为成都理工大学能源学院研究生,在李娜副教授的指导下进行研究。目前主要研究领域是纳米机器人在油气开发中的应用。李娜,成都理工大学能源学院副教授、博士研究生导师、油气藏地质及开发工程国家重点实验室固定研究人员。2005年7月毕业于中国科技大学,2010年7月在中国科技大学获得博士学位。主要研究方向为储层表征纳米机器和纳米传感器的研究,主持和参加了10余项国家级及省部级科研项目,共发表20多篇学术论文。2014年,被评为成都理工大学中青年科研骨干。2018年4月到2019年4月期间作为访问学者于University of Alberta访学,回国后被评为成都理工大学珠峰攀登计划-珠峰新星。
引用本文:    
彭仁强, 李娜, 陈倩霞. 掺杂金属元素对Fe3O4纳米材料磁性性质影响的研究进展[J]. 材料导报, 2020, 34(Z2): 74-77.
PENG Renqiang, LI Na, CHEN Qianxia. Research Progress on the Influence of Doped Metal Elements on the Magnetism of Fe3O4 Nanometer Materials. Materials Reports, 2020, 34(Z2): 74-77.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/74
1 Gupta R, Sood A K, Metcalf P, et al. Physical Review B, 2002, 65(10), 4430.
2 Liu J, Zhang S, Nan Z, et al.Journal of Physical Chemistry C, 2016, 120(2), 1328.
3 Zhang T, Cao C, TangX, et al. Nanotechnology, 2017, 28(4), 1361.
4 Galarreta I, Insausti M, Gil De Muro I, et al.Nanomaterials, 2018, 8(2), 63.
5 Modaresi N, Afzalzadeh R, Aslibeiki B, et al.Journal of Magnetism And Magnetic Materials, 2019, 482, 206.
6 Song Z, Wang B, Yu J, et al.Chemical Engineering Journal, 2018, 354, 517.
7 Malek T J, Chaki S H, Tailor J P, et al.Journal of Thermal Analysis And Calorimetry, 2018, 132(2), 895.
8 Ma Y, Xia J, Yao C, et al.Chemistry of Materials, 2019, 31(18), 7255.
9 Si Y, Zhang G, Wang D, et al.Chemical Engineering Journal, 2019, 360, 289.
10 Jakub Z, Hulva J, Mirabella F, et al.Journal of Physical Chemistry C, 2019, 123(24), 15038.
11 Liu J, Kong L, Huang X, et al. RSC Advances, 2018, 8(71), 40804.
12 Wahab A, Imran M, Ikram M, et al.Applied Nanoscience, 2019, 9(8), 1823.
13 Drake P, Cho H J, Shih P S, et al. Journal of Materials Chemistry, 2007, 17(46), 4914.
14 Wang Y, Li H, Guo L, et al.RSC Advances, 2019, 9(33), 18815.
15 Teimouri M, Husain S W, Saber-Tehrani M, et al.Separation Science and Technology, 2019, 54(4), 634.
16 Cheng T S, Pan J, Xu Y Y, et al.Journal of Inorganic Materials, 2019, 34(8), 899.
17 Ishikawa M, Tanaka H, Kawai T.Applied Physics Letters, 2005, 86(22), 2504.
18 Wang C, Yang S, Chang H, et al.Journal of Molecular Catalysis A-Che-mical, 2013, 376, 13.
19 Deepak F L, Banobre-Lopez M, Carbo-Argibay E, et al.Journal of Physical Chemistry C, 2015, 119(21), 11947.
20 Lasheras X, Insausti M, Martinez De La Fuente J, et al. Dalton Transactions, 2019, 48(30), 11480.
21 Castellanos-Rubio I, Insausti M, Garaio E, et al.Nanoscale, 2014, 6(13), 7542.
22 Mazarío E, Sánchez-Marcos J, Menéndez N, et al.The Journal of Physical Chemistry C, 2015, 119(12), 6828.
23 Del Sol-Fernandez S, Portilla-Tundidor Y, Gutierrez L, et al.ACS Applied Materials & Interfaces, 2019, 11(30), 26648.
24 Vamvakidis K, Sakellari D, Angelakeris M, et al.Journal of Nanoparticle Research, 2013, 15(6), 1743.
25 Chen Z, Zheng Y, Liu Y, et al.Materials Chemistry and Physics, 2019, 238, 121893.
26 Fantechi E, Campo G, Carta D, et al.Journal of Physical Chemistry C, 2012, 116(14), 8261.
27 Aghazadeh M, Ganjali M R.Journal of Materials Science-Materials In Electronics, 2018, 29(6), 4981.
28 Aghazadeh M, Karimzadeh I.Materials Research Express, 2017, 4(10), 105505.
29 Azab A A, El-Menyawy E M.Journal of Electronic Materials, 2019, 48(5), 3229.
30 Blanco-Andujar C, Walter A, Cotin G, et al.Nanomedicine, 2016, 11(14), 1889.
31 Truc T A, Hoan NX, Bach D T, et al. Journal of Nanoscience and Nanotechnology, 2020, 20(6), 3519.
32 Galloway J M, Arakaki A, Masuda F, et al.Journal of Materials Chemistry, 2011, 21(39), 15244.
33 Adeyeye A O, Boothroyd C B, et al. Journal of Applied Physics, 2007, 101(1), 5096.
34 Aghazadeh M, Ganjali M R.Journal of Materials Science, 2018, 53(1), 295.
35 Aghazadeh M, Karimzadeh I, Maragheh M G, et al.Korean Journal of Chemical Engineering, 2018, 35(6), 1341.
36 Pal M, Lee S, Kwon D, et al.Analytica Chimica Acta, 2017, 952, 81.
37 Liu J, Bin Y, Matsuo M.Journal of Physical Chemistry C, 2012, 116(1), 134.
38 Aghazadeh M.Journal of Materials Science-Materials in Electronics, 2017, 28(24), 18755.
39 Choi H, Kim C S, Kim S B.Journal of the Korean Physical Society, 2018, 72(2), 243.
40 Ferrari S, Bilovol V, Pampillo L G, et al.Solid State Sciences, 2018, 77, 1.
41 Li X, Liu E, Zhang Z, et al. Journal of Materials Science-Materials in Electronics, 2019, 30(4), 3177.
42 Aghazadeh M, Karimzadeh I, Ganjali M R.Journal of Electronic Mate-rials, 2018, 3026.
43 Anjum S, Tufail R, Saleem H, et al.Journal of Superconductivity And Novel Magnetism, 2017, 30(8), 2291.
44 Saha P, Rakshit R, Mandal K.Journal of Magnetism and Magnetic Materials, 2019, 475, 130.
45 Anjana P M, Bindhu M R, Umadevi M, et al.Journal of Materials Science-Materials In Electronics, 2018, 29(7), 6040.
46 Xuan Sang N, Tien Dung P, Trang Thu Thi T, et al.Materials Technology, 2019, 35(6), 335.
47 Babu A T, Sebastian M, Manaf O, et al.Journal of Inorganic and Organometallic Polymers and Materials, 2019, 30(6), 1944.
48 Zhang J, Huang L L, Zheng J, et al.Journal of Magnetism and Magnetic Materials, 2020, 497, 166011.
49 Zhang A, Nan Z.Journal of Thermal Analysis and Calorimetry, 2018, 132(2), 859.
50 Ramadan R.Applied Physics A-Materials Science & Processing, 2019, 125(9), 586.
51 Huang X, Xu C, Ma J, et al. Advanced Powder Technology, 2018, 29(3), 796.
52 Qi Z, Lan H, Joshi T P, et al.RSC Advances, 2016, 6(71), 66990.
53 Fang X, Yao J, Hu X, et al. Talanta, 2020, 207, 120313.
54 Hosseini M, Sabet F S, Khabbaz H, et al.Analytical Methods, 2017, 9(23), 3519.
55 Hajjami M, Sharifirad F, Gholamian F.Applied Organometallic Chemistry, 2017, 31(12), e3844.
56 Baskaran P, Udduttula A, Uthirapathy V.IET Nanobiotechnology, 2018, 12(2), 138.
57 Aashima, Uppal S, Arora A, et al.RSC Advances, 2019, 9(40), 23129.
58 Petran A, Radu T, Borodi G, et al.Applied Surface Science, 2018, 428, 492.
59 Scharlach C, Müller L, Wagner S, et al.Journal of Biomedical Nanotechnology, 2016, 12(5), 1001.
60 Yeo S, Choi H, Kim C S, et al. Nanoscale, 2017, 9(37), 13976.
61 Thorat N D, Bohara R A, Yadav H M, et al.RSC Advances, 2016, 6(97), 94967.
62 Aghazadeh M, Karimzadeh I, Ganjali M R.Journal of Materials Science-Materials in Electronics, 2017, 28(24), 19061.
[1] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[2] 张金权, 许咏丽, 谢淳, 付晓刚, 龙斌. Fe-Ni磁性温度感知合金与高温钠的相容性研究[J]. 材料导报, 2020, 34(Z2): 334-337.
[3] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[4] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[5] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[6] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[7] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[8] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[9] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[10] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[11] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[12] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[13] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[14] 赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
[15] 王瑞, 赵宣, 赵丽娟, 闫静, 田晓, 姚占全. 微量稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的研究进展[J]. 材料导报, 2020, 34(7): 7146-7153.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed