Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 362-364    
  金属与金属基复合材料 |
均匀化工艺对大尺寸7075铝合金组织和性能的影响
晁代义1,2, 于芳1, 李红萍3, 高振文1, 张倩2, 吕正风1, 程仁策1
1 山东南山铝业股份有限公司, 龙口 265713
2 烟台南山学院,烟台 265713
3 上海飞机设计研究院, 上海 201210
Effect of Homogenization Process on Microstructure and Properties of Large Size 7075 Aluminum Alloy
CHAO Daiyi1,2, YU Fang1, LI Hongping3, GAO Zhenwen1, ZHANG Qian2, LYU Zhengfeng1, CHENG Rence1
1 Shandong Nanshan Aluminum Co., Ltd., Longkou 265713, China
2 Yantai Nanshan University,Yantai 265713, China
3 Shanghai Aircraft Design and Research Institute, Shanghai 201210, China
下载:  全 文 ( PDF ) ( 3538KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作主要研究了不同均匀化工艺对大规格7075铝合金铸锭组织的影响以及对轧制薄板性能的影响。研究结果显示:合金的铸态组织主要由Al基体+Mg(Zn,Cu)2相非平衡共晶相组成。465 ℃/24 h均热后,合金中枝晶组织部分消失,低熔点相溶解不充分。465 ℃/24 h+478 ℃/8 h均热后,共晶组织基本消除,残留相主要是难溶解的含Fe相,均匀化效果优异。通过将不同均热后铸锭轧制成薄板,二级均热后的薄板T6态力学最优,抗拉强度为533.5 MPa,屈服强度为455 MPa,延伸率为16.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
晁代义
于芳
李红萍
高振文
张倩
吕正风
程仁策
关键词:  7075铝合金  低熔点  轧制  薄板    
Abstract: The effects of different homogenization processes on the microstructure of 7075 aluminum alloy ingot and the properties of rolled sheet were studied in this paper. The results show that: the as-cast structure of the alloy is mainly composed of Al matrix+Mg(Zn, Cu)2 phase non-equilibrium eutectic phase. After homogenization at 465 ℃/24 h, the dendrite structure in the alloy partially disappeared, and the low-melting point phase was not fully dissolved. After 465 ℃/24 h+478 ℃/8 h homogenization, eutectic structure is basically eliminated, and the residual phase is mainly the rich-Fe containing phase, with excellent homogenization effect. After different soaking ingot is rolled into thin plate, the T6 state mechanics of the two-stage homogenization is optimal, with tensile strength is 533.5 MPa, yield strength is 455 MPa and elongation is 16.5%.
Key words:  7075 aluminum alloy    low-melting point phase    rolling    thin plate
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TG142.71  
通讯作者:  cdy19861226@163.com   
作者简介:  晁代义,2013年6月毕业于烟台大学,获得工学硕士学位。2013年9月到2017年3月于哈尔滨工业大学材料学院攻读博士学位。目前就职于山东南山铝业股份有限公司铝业研究院,主要从事高强铝合金热处理及变形工艺研究以及金属材料失效分析。目前担任中国机械工程协会失效分析分会失效分析专家。
引用本文:    
晁代义, 于芳, 李红萍, 高振文, 张倩, 吕正风, 程仁策. 均匀化工艺对大尺寸7075铝合金组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 362-364.
CHAO Daiyi, YU Fang, LI Hongping, GAO Zhenwen, ZHANG Qian, LYU Zhengfeng, CHENG Rence. Effect of Homogenization Process on Microstructure and Properties of Large Size 7075 Aluminum Alloy. Materials Reports, 2020, 34(Z2): 362-364.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/362
1 刘晓涛,崔建忠.材料导报,2005(19),47.
2 方华婵,陈康华,巢宏. 粉末冶金材料科学与工程,2009, 14(6),352.
3 晁代义,孙有政. 材料导报,2019,33(专辑34),398.
4 杨剑冰,庞兴志,胡治流.广西大学学报(自然科学版),2019,44(3),99.
5 李承波,张新明.特种铸造及有色合金, 2106,36(12),1248.
6 冯丹艳.热加工工艺, 2020(10),30.
7 Chandan Mondal. Materials Science and Engineering A,2005,391,367.
[1] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[2] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[3] 刘江林, 齐艳阳, 王涛, 王跃林, 任忠凯, 韩建超. 镁合金板材轧制成形边裂的研究进展[J]. 材料导报, 2020, 34(7): 7138-7145.
[4] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[5] 锅渺, 李莎, 赵利平, 韩建超, 王涛. 波纹辊轧制温度对镁/铝复合板界面组织及力学性能的影响[J]. 材料导报, 2020, 34(22): 22087-22092.
[6] 赵磊杰, 马立峰, 韩廷状, 范沁红. 变形镁合金轧制成形研究进展[J]. 材料导报, 2020, 34(21): 21135-21145.
[7] 何柔月, 黄启波, 崔洪波, 唐鑫. 含微量铒元素Al-5.5Mg-1Zn焊丝焊接7075铝合金TIG焊缝的组织和性能[J]. 材料导报, 2020, 34(18): 18125-18130.
[8] 张聪惠, 薛少博, 肖桂枝, 颜学柏, 舒滢. 微米级稀有金属箔材研究现状[J]. 材料导报, 2020, 34(13): 13139-13145.
[9] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[10] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[11] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[12] 祝佳林, 邓超, 柳亚辉, 刘施峰, 张玉. 钽板退火过程中的储存能演变与再结晶行为[J]. 材料导报, 2019, 33(4): 654-659.
[13] 田世伟, 江海涛, 刘继雄, 张贵华, 徐哲. 钛钢复合板双金属的流变行为及轧制制备[J]. 材料导报, 2019, 33(24): 4141-4146.
[14] 朱涛, 黄光杰, 周芳, 赵飞. 固溶温度对Mg-2Gd-2Zn轧制板材显微组织和力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 58-62.
[15] 杜宝强, 王怀有, 李锦丽, 赵有璟, 杨红军, 钟远, 王敏. 面向太阳能光热发电的NaNO3-KNO3-Mg(NO3)2三元硝酸熔盐*[J]. 《材料导报》期刊社, 2017, 31(18): 1-4.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed